EMG-Based Control of a Lower-Limb Power-Assist Robot View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Kazuo Kiguchi , Yoshiaki Hayashi

ABSTRACT

Power-assist robots are expected to work in many fields such as industry, military, medicine, etc. A lower-limb power-assist robot for physically weak persons is supposed to be used for self-rehabilitation or daily motion assist. In order to assist daily motion of the physically weak persons, the robot must estimate the motion intention of the user in real-time. Although there are several kinds of method to estimate the motion intention of the user in real-time, Electromyogram (EMG) signals are often used to estimate that since they reflect the users muscle activities. However, EMG-based real-time motion estimation is not very easy because of several reasons. In this chapter, an EMG-based control method is introduced to control the power-assist lower-limb exoskeleton robot in accordance with users motion intention. A neuro-fuzzy modifier is applied to deal with those problems. The problems of EMG-based motion estimation are cleared by applying the neuro-fuzzy modifier. Sometimes there is a problem in the users motion even though the users motion is assisted, if the user misunderstands interaction between the users motion and a surrounding environment. In that case, the users motion should be modified to avoid an accident. In this chapter, a method of perception-assist is also introduced to automatically modify the users motion properly. More... »

PAGES

371-383

Book

TITLE

Intelligent Assistive Robots

ISBN

978-3-319-12921-1
978-3-319-12922-8

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-12922-8_14

DOI

http://dx.doi.org/10.1007/978-3-319-12922-8_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001516047


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kyushu University", 
          "id": "https://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Kyushu University, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiguchi", 
        "givenName": "Kazuo", 
        "id": "sg:person.010020372111.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010020372111.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saga University", 
          "id": "https://www.grid.ac/institutes/grid.412339.e", 
          "name": [
            "Saga University, Saga, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayashi", 
        "givenName": "Yoshiaki", 
        "id": "sg:person.01332562211.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332562211.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1163/1568553053662546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000637467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/1568553054455086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031515957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/01439910210425522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049795790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tro.2008.915453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051417052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3468.925661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3477.931520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061158521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3516.653050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061160406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mspec.2005.1413730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061428899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2004.832525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061605763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2003.823266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061740040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2005.848628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061740114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2005.848628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061740114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tro.2006.882928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061784686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tro.2007.892229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061784728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3140702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062103132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/09544062jmes936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064450976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/09544062jmes936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064450976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.2006.1641972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093877179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/roman.2007.4415258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094200919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/3.547465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098869455"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "Power-assist robots are expected to work in many fields such as industry, military, medicine, etc. A lower-limb power-assist robot for physically weak persons is supposed to be used for self-rehabilitation or daily motion assist. In order to assist daily motion of the physically weak persons, the robot must estimate the motion intention of the user in real-time. Although there are several kinds of method to estimate the motion intention of the user in real-time, Electromyogram (EMG) signals are often used to estimate that since they reflect the users muscle activities. However, EMG-based real-time motion estimation is not very easy because of several reasons. In this chapter, an EMG-based control method is introduced to control the power-assist lower-limb exoskeleton robot in accordance with users motion intention. A neuro-fuzzy modifier is applied to deal with those problems. The problems of EMG-based motion estimation are cleared by applying the neuro-fuzzy modifier. Sometimes there is a problem in the users motion even though the users motion is assisted, if the user misunderstands interaction between the users motion and a surrounding environment. In that case, the users motion should be modified to avoid an accident. In this chapter, a method of perception-assist is also introduced to automatically modify the users motion properly.", 
    "editor": [
      {
        "familyName": "Mohammed", 
        "givenName": "Samer", 
        "type": "Person"
      }, 
      {
        "familyName": "Moreno", 
        "givenName": "Juan C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Kong", 
        "givenName": "Kyoungchul", 
        "type": "Person"
      }, 
      {
        "familyName": "Amirat", 
        "givenName": "Yacine", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-12922-8_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-12921-1", 
        "978-3-319-12922-8"
      ], 
      "name": "Intelligent Assistive Robots", 
      "type": "Book"
    }, 
    "name": "EMG-Based Control of a Lower-Limb Power-Assist Robot", 
    "pagination": "371-383", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-12922-8_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "073858163a6786357bed85a6829fad2627f0b32ebaa144f529aad5ed73e5558e"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001516047"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-12922-8_14", 
      "https://app.dimensions.ai/details/publication/pub.1001516047"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000244.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-12922-8_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12922-8_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12922-8_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12922-8_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12922-8_14'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      23 PREDICATES      45 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-12922-8_14 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Na97c28f910a34a20a749fbca18133628
4 schema:citation https://doi.org/10.1108/01439910210425522
5 https://doi.org/10.1109/3468.925661
6 https://doi.org/10.1109/3477.931520
7 https://doi.org/10.1109/3516.653050
8 https://doi.org/10.1109/mspec.2005.1413730
9 https://doi.org/10.1109/robot.2006.1641972
10 https://doi.org/10.1109/roman.2007.4415258
11 https://doi.org/10.1109/tfuzz.2004.832525
12 https://doi.org/10.1109/tnsre.2003.823266
13 https://doi.org/10.1109/tnsre.2005.848628
14 https://doi.org/10.1109/tro.2006.882928
15 https://doi.org/10.1109/tro.2007.892229
16 https://doi.org/10.1109/tro.2008.915453
17 https://doi.org/10.1115/1.3140702
18 https://doi.org/10.1117/3.547465
19 https://doi.org/10.1163/1568553053662546
20 https://doi.org/10.1163/1568553054455086
21 https://doi.org/10.1243/09544062jmes936
22 schema:datePublished 2015
23 schema:datePublishedReg 2015-01-01
24 schema:description Power-assist robots are expected to work in many fields such as industry, military, medicine, etc. A lower-limb power-assist robot for physically weak persons is supposed to be used for self-rehabilitation or daily motion assist. In order to assist daily motion of the physically weak persons, the robot must estimate the motion intention of the user in real-time. Although there are several kinds of method to estimate the motion intention of the user in real-time, Electromyogram (EMG) signals are often used to estimate that since they reflect the users muscle activities. However, EMG-based real-time motion estimation is not very easy because of several reasons. In this chapter, an EMG-based control method is introduced to control the power-assist lower-limb exoskeleton robot in accordance with users motion intention. A neuro-fuzzy modifier is applied to deal with those problems. The problems of EMG-based motion estimation are cleared by applying the neuro-fuzzy modifier. Sometimes there is a problem in the users motion even though the users motion is assisted, if the user misunderstands interaction between the users motion and a surrounding environment. In that case, the users motion should be modified to avoid an accident. In this chapter, a method of perception-assist is also introduced to automatically modify the users motion properly.
25 schema:editor N723ce8d07a9b4999a7517d4e0875a071
26 schema:genre chapter
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N6f3a4c8da4ef479581c35b23606441c1
30 schema:name EMG-Based Control of a Lower-Limb Power-Assist Robot
31 schema:pagination 371-383
32 schema:productId N1987d470cee5454989bd5721c08f85bc
33 N20650fdaa7254ad780c450a1f2fd29b2
34 N5977acb5e5184f87a829905dc65ddec6
35 schema:publisher N387f89bfc07e4d40b807b918446df144
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001516047
37 https://doi.org/10.1007/978-3-319-12922-8_14
38 schema:sdDatePublished 2019-04-15T23:49
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nb9ddaeef1039471291fba0903fd99f01
41 schema:url http://link.springer.com/10.1007/978-3-319-12922-8_14
42 sgo:license sg:explorer/license/
43 sgo:sdDataset chapters
44 rdf:type schema:Chapter
45 N1987d470cee5454989bd5721c08f85bc schema:name readcube_id
46 schema:value 073858163a6786357bed85a6829fad2627f0b32ebaa144f529aad5ed73e5558e
47 rdf:type schema:PropertyValue
48 N20650fdaa7254ad780c450a1f2fd29b2 schema:name dimensions_id
49 schema:value pub.1001516047
50 rdf:type schema:PropertyValue
51 N2a163574d7f846188bb1cbaad8af7e1a schema:familyName Amirat
52 schema:givenName Yacine
53 rdf:type schema:Person
54 N3431b1a83d904dca92ed36c71af49200 schema:familyName Kong
55 schema:givenName Kyoungchul
56 rdf:type schema:Person
57 N387f89bfc07e4d40b807b918446df144 schema:location Cham
58 schema:name Springer International Publishing
59 rdf:type schema:Organisation
60 N4797f70ab03c42468750025ea1d90cf4 schema:familyName Mohammed
61 schema:givenName Samer
62 rdf:type schema:Person
63 N4dbb47d358b14b819b45cc44f5ffccc5 rdf:first N3431b1a83d904dca92ed36c71af49200
64 rdf:rest N6999ba5d2f6b42f2b3eb1a46ce75b3a8
65 N4f17b3dc91744f13b9ee885de05892b7 rdf:first Nea0c2a29e74645df898c52be6fd9a75b
66 rdf:rest N4dbb47d358b14b819b45cc44f5ffccc5
67 N5977acb5e5184f87a829905dc65ddec6 schema:name doi
68 schema:value 10.1007/978-3-319-12922-8_14
69 rdf:type schema:PropertyValue
70 N5bead71d07e54343ac26dc5eee9d8e79 rdf:first sg:person.01332562211.09
71 rdf:rest rdf:nil
72 N6999ba5d2f6b42f2b3eb1a46ce75b3a8 rdf:first N2a163574d7f846188bb1cbaad8af7e1a
73 rdf:rest rdf:nil
74 N6f3a4c8da4ef479581c35b23606441c1 schema:isbn 978-3-319-12921-1
75 978-3-319-12922-8
76 schema:name Intelligent Assistive Robots
77 rdf:type schema:Book
78 N723ce8d07a9b4999a7517d4e0875a071 rdf:first N4797f70ab03c42468750025ea1d90cf4
79 rdf:rest N4f17b3dc91744f13b9ee885de05892b7
80 Na97c28f910a34a20a749fbca18133628 rdf:first sg:person.010020372111.48
81 rdf:rest N5bead71d07e54343ac26dc5eee9d8e79
82 Nb9ddaeef1039471291fba0903fd99f01 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Nea0c2a29e74645df898c52be6fd9a75b schema:familyName Moreno
85 schema:givenName Juan C.
86 rdf:type schema:Person
87 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information and Computing Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
91 schema:name Artificial Intelligence and Image Processing
92 rdf:type schema:DefinedTerm
93 sg:person.010020372111.48 schema:affiliation https://www.grid.ac/institutes/grid.177174.3
94 schema:familyName Kiguchi
95 schema:givenName Kazuo
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010020372111.48
97 rdf:type schema:Person
98 sg:person.01332562211.09 schema:affiliation https://www.grid.ac/institutes/grid.412339.e
99 schema:familyName Hayashi
100 schema:givenName Yoshiaki
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332562211.09
102 rdf:type schema:Person
103 https://doi.org/10.1108/01439910210425522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049795790
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/3468.925661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157829
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/3477.931520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061158521
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/3516.653050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061160406
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/mspec.2005.1413730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061428899
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/robot.2006.1641972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093877179
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/roman.2007.4415258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094200919
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/tfuzz.2004.832525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605763
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/tnsre.2003.823266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061740040
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/tnsre.2005.848628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061740114
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/tro.2006.882928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061784686
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/tro.2007.892229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061784728
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/tro.2008.915453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051417052
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1115/1.3140702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062103132
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1117/3.547465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098869455
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1163/1568553053662546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000637467
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1163/1568553054455086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031515957
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1243/09544062jmes936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064450976
138 rdf:type schema:CreativeWork
139 https://www.grid.ac/institutes/grid.177174.3 schema:alternateName Kyushu University
140 schema:name Kyushu University, Fukuoka, Japan
141 rdf:type schema:Organization
142 https://www.grid.ac/institutes/grid.412339.e schema:alternateName Saga University
143 schema:name Saga University, Saga, Japan
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...