A Topology-Based Approach to Visualize the Thematic Composition of Document Collections View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Patrick Oesterling , Christian Heine , Gunther H. Weber , Gerik Scheuermann

ABSTRACT

The thematic composition of document collections is commonly conceptualized by clusters of high-dimensional point clouds. However, illustrating these clusters is challenging: typical visualizations such as colored projections or parallel coordinate plots suffer from feature occlusion and noise covering the whole visualization. We propose a method that avoids structural occlusion by using topology-based visualizations to preserve primary clustering features and neglect geometric properties that cannot be preserved in low-dimensional representations. Abstracting the input points as nested dense regions with individual properties, we provide the user with intuitive landscape visualizations that illustrate the high-dimensional clustering structure occlusion-free. More... »

PAGES

63-85

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-12655-5_4

DOI

http://dx.doi.org/10.1007/978-3-319-12655-5_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030290889


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Leipzig University", 
          "id": "https://www.grid.ac/institutes/grid.9647.c", 
          "name": [
            "Image and Signal Processing Group, Institute of Computer Science, Leipzig University, Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oesterling", 
        "givenName": "Patrick", 
        "id": "sg:person.012502263423.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012502263423.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Scientific Visualization Group, Department of Computer Science, ETH Z\u00fcrich, Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heine", 
        "givenName": "Christian", 
        "id": "sg:person.01322065347.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322065347.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weber", 
        "givenName": "Gunther H.", 
        "id": "sg:person.0764637220.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764637220.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leipzig University", 
          "id": "https://www.grid.ac/institutes/grid.9647.c", 
          "name": [
            "Image and Signal Processing Group, Institute of Computer Science, Leipzig University, Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scheuermann", 
        "givenName": "Gerik", 
        "id": "sg:person.0777577160.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777577160.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00454-002-2885-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001786843", 
          "https://doi.org/10.1007/s00454-002-2885-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00454-002-2885-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001786843", 
          "https://doi.org/10.1007/s00454-002-2885-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15390-7_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005520175", 
          "https://doi.org/10.1007/978-3-642-15390-7_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15390-7_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005520175", 
          "https://doi.org/10.1007/978-3-642-15390-7_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(98)00039-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008416911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012153938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-08968-2_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014585116", 
          "https://doi.org/10.1007/978-3-662-08968-2_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/505282.505283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023316280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56927-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026330191", 
          "https://doi.org/10.1007/978-3-642-56927-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56927-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026330191", 
          "https://doi.org/10.1007/978-3-642-56927-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-12116-6_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027648643", 
          "https://doi.org/10.1007/978-3-642-12116-6_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-12116-6_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027648643", 
          "https://doi.org/10.1007/978-3-642-12116-6_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0306-4573(88)90021-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032478827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0306-4573(88)90021-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032478827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-7721(02)00093-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033448965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-7721(02)00093-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033448965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008690008856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038914205", 
          "https://doi.org/10.1023/a:1008690008856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.163414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061178948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-c.1969.222678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061455087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2007.70443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061812856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2007.70601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061812930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2008.153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061813005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2008.85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061813103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2011.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061813657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2012.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061813736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2412323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069920775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.1990.146402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086261669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vast.2010.5652940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093403540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infvis.1995.528686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094041644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sibgrapi.2007.21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094106586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vast.2009.5332629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094623830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.1998.745302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094632142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iv.2006.104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094787904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1100484362", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4135/9781412985130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100484362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4135/9781412985130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100484362"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "The thematic composition of document collections is commonly conceptualized by clusters of high-dimensional point clouds. However, illustrating these clusters is challenging: typical visualizations such as colored projections or parallel coordinate plots suffer from feature occlusion and noise covering the whole visualization. We propose a method that avoids structural occlusion by using topology-based visualizations to preserve primary clustering features and neglect geometric properties that cannot be preserved in low-dimensional representations. Abstracting the input points as nested dense regions with individual properties, we provide the user with intuitive landscape visualizations that illustrate the high-dimensional clustering structure occlusion-free.", 
    "editor": [
      {
        "familyName": "Biemann", 
        "givenName": "Chris", 
        "type": "Person"
      }, 
      {
        "familyName": "Mehler", 
        "givenName": "Alexander", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-12655-5_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-12654-8", 
        "978-3-319-12655-5"
      ], 
      "name": "Text Mining", 
      "type": "Book"
    }, 
    "name": "A Topology-Based Approach to Visualize the Thematic Composition of Document Collections", 
    "pagination": "63-85", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-12655-5_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "904caa9843de4259323719cabb3039d6ea417278f6df2b7fce31404c05e83e3a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030290889"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-12655-5_4", 
      "https://app.dimensions.ai/details/publication/pub.1030290889"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000558.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-12655-5_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12655-5_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12655-5_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12655-5_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12655-5_4'


 

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      23 PREDICATES      56 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-12655-5_4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N81ee61157e0a45aa82bf2eac1f16e20e
4 schema:citation sg:pub.10.1007/978-3-642-12116-6_27
5 sg:pub.10.1007/978-3-642-15390-7_4
6 sg:pub.10.1007/978-3-642-56927-2
7 sg:pub.10.1007/978-3-662-08968-2_16
8 sg:pub.10.1007/s00454-002-2885-2
9 sg:pub.10.1023/a:1008690008856
10 https://app.dimensions.ai/details/publication/pub.1100484362
11 https://doi.org/10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9
12 https://doi.org/10.1016/0306-4573(88)90021-0
13 https://doi.org/10.1016/s0925-2312(98)00039-3
14 https://doi.org/10.1016/s0925-7721(02)00093-7
15 https://doi.org/10.1109/5.163414
16 https://doi.org/10.1109/infvis.1995.528686
17 https://doi.org/10.1109/iv.2006.104
18 https://doi.org/10.1109/sibgrapi.2007.21
19 https://doi.org/10.1109/t-c.1969.222678
20 https://doi.org/10.1109/tvcg.2007.70443
21 https://doi.org/10.1109/tvcg.2007.70601
22 https://doi.org/10.1109/tvcg.2008.153
23 https://doi.org/10.1109/tvcg.2008.85
24 https://doi.org/10.1109/tvcg.2011.27
25 https://doi.org/10.1109/tvcg.2012.120
26 https://doi.org/10.1109/vast.2009.5332629
27 https://doi.org/10.1109/vast.2010.5652940
28 https://doi.org/10.1109/visual.1990.146402
29 https://doi.org/10.1109/visual.1998.745302
30 https://doi.org/10.1145/505282.505283
31 https://doi.org/10.2307/2412323
32 https://doi.org/10.4135/9781412985130
33 schema:datePublished 2014
34 schema:datePublishedReg 2014-01-01
35 schema:description The thematic composition of document collections is commonly conceptualized by clusters of high-dimensional point clouds. However, illustrating these clusters is challenging: typical visualizations such as colored projections or parallel coordinate plots suffer from feature occlusion and noise covering the whole visualization. We propose a method that avoids structural occlusion by using topology-based visualizations to preserve primary clustering features and neglect geometric properties that cannot be preserved in low-dimensional representations. Abstracting the input points as nested dense regions with individual properties, we provide the user with intuitive landscape visualizations that illustrate the high-dimensional clustering structure occlusion-free.
36 schema:editor Nd52eae931662450783621efb3388322a
37 schema:genre chapter
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N3d7907caee4d49e997ad739be07701af
41 schema:name A Topology-Based Approach to Visualize the Thematic Composition of Document Collections
42 schema:pagination 63-85
43 schema:productId N4925adcf0f5b462eb75aa97834978bf3
44 N5382b4dc68dd4f66844d42871ebbd43d
45 N73dd26c8f0cc43d1b2c9e7ee8f3465a7
46 schema:publisher N54a13315f1644c0ebc039044f3d94c68
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030290889
48 https://doi.org/10.1007/978-3-319-12655-5_4
49 schema:sdDatePublished 2019-04-15T16:50
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N21710ad782d94a94a4b851e730c84895
52 schema:url http://link.springer.com/10.1007/978-3-319-12655-5_4
53 sgo:license sg:explorer/license/
54 sgo:sdDataset chapters
55 rdf:type schema:Chapter
56 N19ba3eb1d8ac4e8294d8c6fb20e4afbf schema:familyName Mehler
57 schema:givenName Alexander
58 rdf:type schema:Person
59 N21710ad782d94a94a4b851e730c84895 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N30166baa995d401ab6e15537f0a148c0 schema:familyName Biemann
62 schema:givenName Chris
63 rdf:type schema:Person
64 N3d7907caee4d49e997ad739be07701af schema:isbn 978-3-319-12654-8
65 978-3-319-12655-5
66 schema:name Text Mining
67 rdf:type schema:Book
68 N4925adcf0f5b462eb75aa97834978bf3 schema:name readcube_id
69 schema:value 904caa9843de4259323719cabb3039d6ea417278f6df2b7fce31404c05e83e3a
70 rdf:type schema:PropertyValue
71 N5382b4dc68dd4f66844d42871ebbd43d schema:name dimensions_id
72 schema:value pub.1030290889
73 rdf:type schema:PropertyValue
74 N54a13315f1644c0ebc039044f3d94c68 schema:location Cham
75 schema:name Springer International Publishing
76 rdf:type schema:Organisation
77 N73dd26c8f0cc43d1b2c9e7ee8f3465a7 schema:name doi
78 schema:value 10.1007/978-3-319-12655-5_4
79 rdf:type schema:PropertyValue
80 N81ee61157e0a45aa82bf2eac1f16e20e rdf:first sg:person.012502263423.09
81 rdf:rest Nddf016445bc54f06a560decb19be7160
82 Nd23b954ccd8c40a69c37a22f9ba234e6 rdf:first sg:person.0777577160.41
83 rdf:rest rdf:nil
84 Nd52eae931662450783621efb3388322a rdf:first N30166baa995d401ab6e15537f0a148c0
85 rdf:rest Nf1d5b9aac20147bf83cc392d1acac135
86 Nddf016445bc54f06a560decb19be7160 rdf:first sg:person.01322065347.76
87 rdf:rest Nf814de511eab4be9b5bc76e729b6ef2d
88 Nf1d5b9aac20147bf83cc392d1acac135 rdf:first N19ba3eb1d8ac4e8294d8c6fb20e4afbf
89 rdf:rest rdf:nil
90 Nf814de511eab4be9b5bc76e729b6ef2d rdf:first sg:person.0764637220.09
91 rdf:rest Nd23b954ccd8c40a69c37a22f9ba234e6
92 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
93 schema:name Information and Computing Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
96 schema:name Artificial Intelligence and Image Processing
97 rdf:type schema:DefinedTerm
98 sg:person.012502263423.09 schema:affiliation https://www.grid.ac/institutes/grid.9647.c
99 schema:familyName Oesterling
100 schema:givenName Patrick
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012502263423.09
102 rdf:type schema:Person
103 sg:person.01322065347.76 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
104 schema:familyName Heine
105 schema:givenName Christian
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322065347.76
107 rdf:type schema:Person
108 sg:person.0764637220.09 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
109 schema:familyName Weber
110 schema:givenName Gunther H.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764637220.09
112 rdf:type schema:Person
113 sg:person.0777577160.41 schema:affiliation https://www.grid.ac/institutes/grid.9647.c
114 schema:familyName Scheuermann
115 schema:givenName Gerik
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777577160.41
117 rdf:type schema:Person
118 sg:pub.10.1007/978-3-642-12116-6_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027648643
119 https://doi.org/10.1007/978-3-642-12116-6_27
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/978-3-642-15390-7_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005520175
122 https://doi.org/10.1007/978-3-642-15390-7_4
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/978-3-642-56927-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026330191
125 https://doi.org/10.1007/978-3-642-56927-2
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/978-3-662-08968-2_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014585116
128 https://doi.org/10.1007/978-3-662-08968-2_16
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s00454-002-2885-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001786843
131 https://doi.org/10.1007/s00454-002-2885-2
132 rdf:type schema:CreativeWork
133 sg:pub.10.1023/a:1008690008856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038914205
134 https://doi.org/10.1023/a:1008690008856
135 rdf:type schema:CreativeWork
136 https://app.dimensions.ai/details/publication/pub.1100484362 schema:CreativeWork
137 https://doi.org/10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012153938
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/0306-4573(88)90021-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032478827
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0925-2312(98)00039-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008416911
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0925-7721(02)00093-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033448965
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/5.163414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061178948
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/infvis.1995.528686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094041644
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/iv.2006.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094787904
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/sibgrapi.2007.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094106586
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/t-c.1969.222678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061455087
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/tvcg.2007.70443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061812856
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/tvcg.2007.70601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061812930
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/tvcg.2008.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813005
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/tvcg.2008.85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813103
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/tvcg.2011.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813657
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/tvcg.2012.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813736
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/vast.2009.5332629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094623830
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/vast.2010.5652940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093403540
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/visual.1990.146402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086261669
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/visual.1998.745302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094632142
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1145/505282.505283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023316280
176 rdf:type schema:CreativeWork
177 https://doi.org/10.2307/2412323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069920775
178 rdf:type schema:CreativeWork
179 https://doi.org/10.4135/9781412985130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100484362
180 rdf:type schema:CreativeWork
181 https://www.grid.ac/institutes/grid.184769.5 schema:alternateName Lawrence Berkeley National Laboratory
182 schema:name Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
183 rdf:type schema:Organization
184 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
185 schema:name Scientific Visualization Group, Department of Computer Science, ETH Zürich, Zürich, Switzerland
186 rdf:type schema:Organization
187 https://www.grid.ac/institutes/grid.9647.c schema:alternateName Leipzig University
188 schema:name Image and Signal Processing Group, Institute of Computer Science, Leipzig University, Leipzig, Germany
189 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...