Ontology type: schema:Chapter Open Access: True
2014-12-02
AUTHORSOlympia Roeva , Stefka Fidanova , Marcin Paprzycki
ABSTRACTIn this paper, an investigation of the influence of the population size on the Genetic Algorithm (GA) and Ant Colony Optimization (ACO) performance for a model parameter identification problem, is considered. The mathematical model of an E. coli fed-batch cultivation process is studied. The three model parameters—maximum specific growth rate (μmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{max}$$\end{document}), saturation constant (kS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{S}$$\end{document}) and yield coefficient (YS/X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_{S/X}$$\end{document}) are estimated using different population sizes. Population sizes between 5 and 200 chromosomes and 5 and 100 ants in the population are tested with constant number of generations. In order to obtain meaningful information about the influence of the population size a considerable number of independent runs of the GA are performed. The observed results show that the optimal population size is 100 chromosomes for GA and 70 ants for ACO for 200 generations. In this case accurate model parameters values are obtained in reasonable computational time. Further increase of the population size, above 100 chromosomes for GA and 70 ants for ACO, does not improve the solution accuracy. Moreover, the computational time is increased significantly. More... »
PAGES107-120
Recent Advances in Computational Optimization
ISBN
978-3-319-12630-2
978-3-319-12631-9
http://scigraph.springernature.com/pub.10.1007/978-3-319-12631-9_7
DOIhttp://dx.doi.org/10.1007/978-3-319-12631-9_7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1024296604
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, Acad. G. Bonchev Str., bl.105, 1113, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.493309.4",
"name": [
"Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, Acad. G. Bonchev Str., bl.105, 1113, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Roeva",
"givenName": "Olympia",
"id": "sg:person.015745057111.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.424988.b",
"name": [
"Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Fidanova",
"givenName": "Stefka",
"id": "sg:person.011173106320.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Systems Research Institute, Polish Academy of Sciences, Warsaw and Management Academy, Warsaw, Poland",
"id": "http://www.grid.ac/institutes/grid.465202.7",
"name": [
"Systems Research Institute, Polish Academy of Sciences, Warsaw and Management Academy, Warsaw, Poland"
],
"type": "Organization"
},
"familyName": "Paprzycki",
"givenName": "Marcin",
"id": "sg:person.014761523751.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014761523751.31"
],
"type": "Person"
}
],
"datePublished": "2014-12-02",
"datePublishedReg": "2014-12-02",
"description": "In this paper, an investigation of the influence of the population size on the Genetic Algorithm (GA) and Ant Colony Optimization (ACO) performance for a model parameter identification problem, is considered. The mathematical model of an E. coli fed-batch cultivation process is studied. The three model parameters\u2014maximum specific growth rate (\u03bcmax\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu _{max}$$\\end{document}), saturation constant (kS\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$k_{S}$$\\end{document}) and yield coefficient (YS/X\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$Y_{S/X}$$\\end{document}) are estimated using different population sizes. Population sizes between 5 and 200 chromosomes and 5 and 100 ants in the population are tested with constant number of generations. In order to obtain meaningful information about the influence of the population size a considerable number of independent runs of the GA are performed. The observed results show that the optimal population size is 100 chromosomes for GA and 70 ants for ACO for 200 generations. In this case accurate model parameters values are obtained in reasonable computational time. Further increase of the population size, above 100 chromosomes for GA and 70 ants for ACO, does not improve the solution accuracy. Moreover, the computational time is increased significantly.",
"editor": [
{
"familyName": "Fidanova",
"givenName": "Stefka",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-12631-9_7",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-319-12630-2",
"978-3-319-12631-9"
],
"name": "Recent Advances in Computational Optimization",
"type": "Book"
},
"keywords": [
"population size",
"chromosomes",
"ants",
"different population sizes",
"specific growth rate",
"growth rate",
"cultivation process",
"genetics",
"optimal population size",
"model parameter identification problem",
"computational time",
"parameter identification problem",
"genetic algorithm",
"considerable number",
"size influence",
"reasonable computational time",
"E. coli fed-batch cultivation process",
"model parameter values",
"size",
"population",
"mathematical model",
"solution accuracy",
"optimization performance",
"identification problem",
"fed-batch cultivation process",
"number",
"generation",
"independent runs",
"parameter values",
"algorithm performance",
"constant number",
"further increase",
"process",
"ACO",
"influence",
"increase",
"process modeling",
"meaningful information",
"information",
"observed results",
"results",
"time",
"investigation",
"algorithm",
"rate",
"problem",
"modeling",
"accuracy",
"performance",
"model",
"coefficient",
"order",
"run",
"saturation",
"cases",
"values",
"paper"
],
"name": "Population Size Influence on the Genetic and Ant Algorithms Performance in Case of Cultivation Process Modeling",
"pagination": "107-120",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1024296604"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-12631-9_7"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-12631-9_7",
"https://app.dimensions.ai/details/publication/pub.1024296604"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:45",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_281.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-12631-9_7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12631-9_7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12631-9_7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12631-9_7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12631-9_7'
This table displays all metadata directly associated to this object as RDF triples.
137 TRIPLES
23 PREDICATES
82 URIs
75 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-12631-9_7 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0102 |
3 | ″ | schema:author | N7f33a6795eb24e569bac7d97470231cc |
4 | ″ | schema:datePublished | 2014-12-02 |
5 | ″ | schema:datePublishedReg | 2014-12-02 |
6 | ″ | schema:description | In this paper, an investigation of the influence of the population size on the Genetic Algorithm (GA) and Ant Colony Optimization (ACO) performance for a model parameter identification problem, is considered. The mathematical model of an E. coli fed-batch cultivation process is studied. The three model parameters—maximum specific growth rate (μmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{max}$$\end{document}), saturation constant (kS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{S}$$\end{document}) and yield coefficient (YS/X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_{S/X}$$\end{document}) are estimated using different population sizes. Population sizes between 5 and 200 chromosomes and 5 and 100 ants in the population are tested with constant number of generations. In order to obtain meaningful information about the influence of the population size a considerable number of independent runs of the GA are performed. The observed results show that the optimal population size is 100 chromosomes for GA and 70 ants for ACO for 200 generations. In this case accurate model parameters values are obtained in reasonable computational time. Further increase of the population size, above 100 chromosomes for GA and 70 ants for ACO, does not improve the solution accuracy. Moreover, the computational time is increased significantly. |
7 | ″ | schema:editor | N731c7274577b44a1b58789926317fe57 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | N1f3dcddb2ea3497bade7ff0b5cd69eeb |
12 | ″ | schema:keywords | ACO |
13 | ″ | ″ | E. coli fed-batch cultivation process |
14 | ″ | ″ | accuracy |
15 | ″ | ″ | algorithm |
16 | ″ | ″ | algorithm performance |
17 | ″ | ″ | ants |
18 | ″ | ″ | cases |
19 | ″ | ″ | chromosomes |
20 | ″ | ″ | coefficient |
21 | ″ | ″ | computational time |
22 | ″ | ″ | considerable number |
23 | ″ | ″ | constant number |
24 | ″ | ″ | cultivation process |
25 | ″ | ″ | different population sizes |
26 | ″ | ″ | fed-batch cultivation process |
27 | ″ | ″ | further increase |
28 | ″ | ″ | generation |
29 | ″ | ″ | genetic algorithm |
30 | ″ | ″ | genetics |
31 | ″ | ″ | growth rate |
32 | ″ | ″ | identification problem |
33 | ″ | ″ | increase |
34 | ″ | ″ | independent runs |
35 | ″ | ″ | influence |
36 | ″ | ″ | information |
37 | ″ | ″ | investigation |
38 | ″ | ″ | mathematical model |
39 | ″ | ″ | meaningful information |
40 | ″ | ″ | model |
41 | ″ | ″ | model parameter identification problem |
42 | ″ | ″ | model parameter values |
43 | ″ | ″ | modeling |
44 | ″ | ″ | number |
45 | ″ | ″ | observed results |
46 | ″ | ″ | optimal population size |
47 | ″ | ″ | optimization performance |
48 | ″ | ″ | order |
49 | ″ | ″ | paper |
50 | ″ | ″ | parameter identification problem |
51 | ″ | ″ | parameter values |
52 | ″ | ″ | performance |
53 | ″ | ″ | population |
54 | ″ | ″ | population size |
55 | ″ | ″ | problem |
56 | ″ | ″ | process |
57 | ″ | ″ | process modeling |
58 | ″ | ″ | rate |
59 | ″ | ″ | reasonable computational time |
60 | ″ | ″ | results |
61 | ″ | ″ | run |
62 | ″ | ″ | saturation |
63 | ″ | ″ | size |
64 | ″ | ″ | size influence |
65 | ″ | ″ | solution accuracy |
66 | ″ | ″ | specific growth rate |
67 | ″ | ″ | time |
68 | ″ | ″ | values |
69 | ″ | schema:name | Population Size Influence on the Genetic and Ant Algorithms Performance in Case of Cultivation Process Modeling |
70 | ″ | schema:pagination | 107-120 |
71 | ″ | schema:productId | N1d969b2224f34c40841c0119fd27f339 |
72 | ″ | ″ | N52a8a25cb6ae41d79f0680a37540f96d |
73 | ″ | schema:publisher | Nbf8498e7d101490faf7abe1d052abf84 |
74 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1024296604 |
75 | ″ | ″ | https://doi.org/10.1007/978-3-319-12631-9_7 |
76 | ″ | schema:sdDatePublished | 2022-05-20T07:45 |
77 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
78 | ″ | schema:sdPublisher | N1bb346d9b0224626a69594afcb85df6f |
79 | ″ | schema:url | https://doi.org/10.1007/978-3-319-12631-9_7 |
80 | ″ | sgo:license | sg:explorer/license/ |
81 | ″ | sgo:sdDataset | chapters |
82 | ″ | rdf:type | schema:Chapter |
83 | N1bb346d9b0224626a69594afcb85df6f | schema:name | Springer Nature - SN SciGraph project |
84 | ″ | rdf:type | schema:Organization |
85 | N1d969b2224f34c40841c0119fd27f339 | schema:name | doi |
86 | ″ | schema:value | 10.1007/978-3-319-12631-9_7 |
87 | ″ | rdf:type | schema:PropertyValue |
88 | N1f3dcddb2ea3497bade7ff0b5cd69eeb | schema:isbn | 978-3-319-12630-2 |
89 | ″ | ″ | 978-3-319-12631-9 |
90 | ″ | schema:name | Recent Advances in Computational Optimization |
91 | ″ | rdf:type | schema:Book |
92 | N52a8a25cb6ae41d79f0680a37540f96d | schema:name | dimensions_id |
93 | ″ | schema:value | pub.1024296604 |
94 | ″ | rdf:type | schema:PropertyValue |
95 | N5a9776fe25754aef87afb07c0ab18a99 | rdf:first | sg:person.014761523751.31 |
96 | ″ | rdf:rest | rdf:nil |
97 | N731c7274577b44a1b58789926317fe57 | rdf:first | Ne77b6999f14d4ec99390c5f20210b4f4 |
98 | ″ | rdf:rest | rdf:nil |
99 | N783f00c294604e97800d44385f40fbce | rdf:first | sg:person.011173106320.18 |
100 | ″ | rdf:rest | N5a9776fe25754aef87afb07c0ab18a99 |
101 | N7f33a6795eb24e569bac7d97470231cc | rdf:first | sg:person.015745057111.08 |
102 | ″ | rdf:rest | N783f00c294604e97800d44385f40fbce |
103 | Nbf8498e7d101490faf7abe1d052abf84 | schema:name | Springer Nature |
104 | ″ | rdf:type | schema:Organisation |
105 | Ne77b6999f14d4ec99390c5f20210b4f4 | schema:familyName | Fidanova |
106 | ″ | schema:givenName | Stefka |
107 | ″ | rdf:type | schema:Person |
108 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
109 | ″ | schema:name | Mathematical Sciences |
110 | ″ | rdf:type | schema:DefinedTerm |
111 | anzsrc-for:0102 | schema:inDefinedTermSet | anzsrc-for: |
112 | ″ | schema:name | Applied Mathematics |
113 | ″ | rdf:type | schema:DefinedTerm |
114 | sg:person.011173106320.18 | schema:affiliation | grid-institutes:grid.424988.b |
115 | ″ | schema:familyName | Fidanova |
116 | ″ | schema:givenName | Stefka |
117 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18 |
118 | ″ | rdf:type | schema:Person |
119 | sg:person.014761523751.31 | schema:affiliation | grid-institutes:grid.465202.7 |
120 | ″ | schema:familyName | Paprzycki |
121 | ″ | schema:givenName | Marcin |
122 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014761523751.31 |
123 | ″ | rdf:type | schema:Person |
124 | sg:person.015745057111.08 | schema:affiliation | grid-institutes:grid.493309.4 |
125 | ″ | schema:familyName | Roeva |
126 | ″ | schema:givenName | Olympia |
127 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08 |
128 | ″ | rdf:type | schema:Person |
129 | grid-institutes:grid.424988.b | schema:alternateName | Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113, Sofia, Bulgaria |
130 | ″ | schema:name | Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113, Sofia, Bulgaria |
131 | ″ | rdf:type | schema:Organization |
132 | grid-institutes:grid.465202.7 | schema:alternateName | Systems Research Institute, Polish Academy of Sciences, Warsaw and Management Academy, Warsaw, Poland |
133 | ″ | schema:name | Systems Research Institute, Polish Academy of Sciences, Warsaw and Management Academy, Warsaw, Poland |
134 | ″ | rdf:type | schema:Organization |
135 | grid-institutes:grid.493309.4 | schema:alternateName | Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, Acad. G. Bonchev Str., bl.105, 1113, Sofia, Bulgaria |
136 | ″ | schema:name | Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, Acad. G. Bonchev Str., bl.105, 1113, Sofia, Bulgaria |
137 | ″ | rdf:type | schema:Organization |