Population Size Influence on the Genetic and Ant Algorithms Performance in Case of Cultivation Process Modeling View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014-12-02

AUTHORS

Olympia Roeva , Stefka Fidanova , Marcin Paprzycki

ABSTRACT

In this paper, an investigation of the influence of the population size on the Genetic Algorithm (GA) and Ant Colony Optimization (ACO) performance for a model parameter identification problem, is considered. The mathematical model of an E. coli fed-batch cultivation process is studied. The three model parameters—maximum specific growth rate (μmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{max}$$\end{document}), saturation constant (kS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{S}$$\end{document}) and yield coefficient (YS/X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_{S/X}$$\end{document}) are estimated using different population sizes. Population sizes between 5 and 200 chromosomes and 5 and 100 ants in the population are tested with constant number of generations. In order to obtain meaningful information about the influence of the population size a considerable number of independent runs of the GA are performed. The observed results show that the optimal population size is 100 chromosomes for GA and 70 ants for ACO for 200 generations. In this case accurate model parameters values are obtained in reasonable computational time. Further increase of the population size, above 100 chromosomes for GA and 70 ants for ACO, does not improve the solution accuracy. Moreover, the computational time is increased significantly. More... »

PAGES

107-120

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-12631-9_7

DOI

http://dx.doi.org/10.1007/978-3-319-12631-9_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024296604


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, Acad. G. Bonchev Str., bl.105, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.493309.4", 
          "name": [
            "Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, Acad. G. Bonchev Str., bl.105, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roeva", 
        "givenName": "Olympia", 
        "id": "sg:person.015745057111.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424988.b", 
          "name": [
            "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fidanova", 
        "givenName": "Stefka", 
        "id": "sg:person.011173106320.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Systems Research Institute, Polish Academy of Sciences, Warsaw and Management Academy, Warsaw, Poland", 
          "id": "http://www.grid.ac/institutes/grid.465202.7", 
          "name": [
            "Systems Research Institute, Polish Academy of Sciences, Warsaw and Management Academy, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paprzycki", 
        "givenName": "Marcin", 
        "id": "sg:person.014761523751.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014761523751.31"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014-12-02", 
    "datePublishedReg": "2014-12-02", 
    "description": "In this paper, an investigation of the influence of the population size on the Genetic Algorithm (GA) and Ant Colony Optimization (ACO) performance for a model parameter identification problem, is considered. The mathematical model of an E. coli fed-batch cultivation process is studied. The three model parameters\u2014maximum specific growth rate (\u03bcmax\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu _{max}$$\\end{document}), saturation constant (kS\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$k_{S}$$\\end{document}) and yield coefficient (YS/X\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$Y_{S/X}$$\\end{document}) are estimated using different population sizes. Population sizes between 5 and 200 chromosomes and 5 and 100 ants in the population are tested with constant number of generations. In order to obtain meaningful information about the influence of the population size a considerable number of independent runs of the GA are performed. The observed results show that the optimal population size is 100 chromosomes for GA and 70 ants for ACO for 200 generations. In this case accurate model parameters values are obtained in reasonable computational time. Further increase of the population size, above 100 chromosomes for GA and 70 ants for ACO, does not improve the solution accuracy. Moreover, the computational time is increased significantly.", 
    "editor": [
      {
        "familyName": "Fidanova", 
        "givenName": "Stefka", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-12631-9_7", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-12630-2", 
        "978-3-319-12631-9"
      ], 
      "name": "Recent Advances in Computational Optimization", 
      "type": "Book"
    }, 
    "keywords": [
      "population size", 
      "chromosomes", 
      "ants", 
      "different population sizes", 
      "specific growth rate", 
      "growth rate", 
      "cultivation process", 
      "genetics", 
      "optimal population size", 
      "model parameter identification problem", 
      "computational time", 
      "parameter identification problem", 
      "genetic algorithm", 
      "considerable number", 
      "size influence", 
      "reasonable computational time", 
      "E. coli fed-batch cultivation process", 
      "model parameter values", 
      "size", 
      "population", 
      "mathematical model", 
      "solution accuracy", 
      "optimization performance", 
      "identification problem", 
      "fed-batch cultivation process", 
      "number", 
      "generation", 
      "independent runs", 
      "parameter values", 
      "algorithm performance", 
      "constant number", 
      "further increase", 
      "process", 
      "ACO", 
      "influence", 
      "increase", 
      "process modeling", 
      "meaningful information", 
      "information", 
      "observed results", 
      "results", 
      "time", 
      "investigation", 
      "algorithm", 
      "rate", 
      "problem", 
      "modeling", 
      "accuracy", 
      "performance", 
      "model", 
      "coefficient", 
      "order", 
      "run", 
      "saturation", 
      "cases", 
      "values", 
      "paper"
    ], 
    "name": "Population Size Influence on the Genetic and Ant Algorithms Performance in Case of Cultivation Process Modeling", 
    "pagination": "107-120", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024296604"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-12631-9_7"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-12631-9_7", 
      "https://app.dimensions.ai/details/publication/pub.1024296604"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_281.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-12631-9_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12631-9_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12631-9_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12631-9_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12631-9_7'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      23 PREDICATES      82 URIs      75 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-12631-9_7 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N7f33a6795eb24e569bac7d97470231cc
4 schema:datePublished 2014-12-02
5 schema:datePublishedReg 2014-12-02
6 schema:description In this paper, an investigation of the influence of the population size on the Genetic Algorithm (GA) and Ant Colony Optimization (ACO) performance for a model parameter identification problem, is considered. The mathematical model of an E. coli fed-batch cultivation process is studied. The three model parameters—maximum specific growth rate (μmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{max}$$\end{document}), saturation constant (kS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{S}$$\end{document}) and yield coefficient (YS/X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_{S/X}$$\end{document}) are estimated using different population sizes. Population sizes between 5 and 200 chromosomes and 5 and 100 ants in the population are tested with constant number of generations. In order to obtain meaningful information about the influence of the population size a considerable number of independent runs of the GA are performed. The observed results show that the optimal population size is 100 chromosomes for GA and 70 ants for ACO for 200 generations. In this case accurate model parameters values are obtained in reasonable computational time. Further increase of the population size, above 100 chromosomes for GA and 70 ants for ACO, does not improve the solution accuracy. Moreover, the computational time is increased significantly.
7 schema:editor N731c7274577b44a1b58789926317fe57
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N1f3dcddb2ea3497bade7ff0b5cd69eeb
12 schema:keywords ACO
13 E. coli fed-batch cultivation process
14 accuracy
15 algorithm
16 algorithm performance
17 ants
18 cases
19 chromosomes
20 coefficient
21 computational time
22 considerable number
23 constant number
24 cultivation process
25 different population sizes
26 fed-batch cultivation process
27 further increase
28 generation
29 genetic algorithm
30 genetics
31 growth rate
32 identification problem
33 increase
34 independent runs
35 influence
36 information
37 investigation
38 mathematical model
39 meaningful information
40 model
41 model parameter identification problem
42 model parameter values
43 modeling
44 number
45 observed results
46 optimal population size
47 optimization performance
48 order
49 paper
50 parameter identification problem
51 parameter values
52 performance
53 population
54 population size
55 problem
56 process
57 process modeling
58 rate
59 reasonable computational time
60 results
61 run
62 saturation
63 size
64 size influence
65 solution accuracy
66 specific growth rate
67 time
68 values
69 schema:name Population Size Influence on the Genetic and Ant Algorithms Performance in Case of Cultivation Process Modeling
70 schema:pagination 107-120
71 schema:productId N1d969b2224f34c40841c0119fd27f339
72 N52a8a25cb6ae41d79f0680a37540f96d
73 schema:publisher Nbf8498e7d101490faf7abe1d052abf84
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024296604
75 https://doi.org/10.1007/978-3-319-12631-9_7
76 schema:sdDatePublished 2022-05-20T07:45
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N1bb346d9b0224626a69594afcb85df6f
79 schema:url https://doi.org/10.1007/978-3-319-12631-9_7
80 sgo:license sg:explorer/license/
81 sgo:sdDataset chapters
82 rdf:type schema:Chapter
83 N1bb346d9b0224626a69594afcb85df6f schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N1d969b2224f34c40841c0119fd27f339 schema:name doi
86 schema:value 10.1007/978-3-319-12631-9_7
87 rdf:type schema:PropertyValue
88 N1f3dcddb2ea3497bade7ff0b5cd69eeb schema:isbn 978-3-319-12630-2
89 978-3-319-12631-9
90 schema:name Recent Advances in Computational Optimization
91 rdf:type schema:Book
92 N52a8a25cb6ae41d79f0680a37540f96d schema:name dimensions_id
93 schema:value pub.1024296604
94 rdf:type schema:PropertyValue
95 N5a9776fe25754aef87afb07c0ab18a99 rdf:first sg:person.014761523751.31
96 rdf:rest rdf:nil
97 N731c7274577b44a1b58789926317fe57 rdf:first Ne77b6999f14d4ec99390c5f20210b4f4
98 rdf:rest rdf:nil
99 N783f00c294604e97800d44385f40fbce rdf:first sg:person.011173106320.18
100 rdf:rest N5a9776fe25754aef87afb07c0ab18a99
101 N7f33a6795eb24e569bac7d97470231cc rdf:first sg:person.015745057111.08
102 rdf:rest N783f00c294604e97800d44385f40fbce
103 Nbf8498e7d101490faf7abe1d052abf84 schema:name Springer Nature
104 rdf:type schema:Organisation
105 Ne77b6999f14d4ec99390c5f20210b4f4 schema:familyName Fidanova
106 schema:givenName Stefka
107 rdf:type schema:Person
108 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
109 schema:name Mathematical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
112 schema:name Applied Mathematics
113 rdf:type schema:DefinedTerm
114 sg:person.011173106320.18 schema:affiliation grid-institutes:grid.424988.b
115 schema:familyName Fidanova
116 schema:givenName Stefka
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18
118 rdf:type schema:Person
119 sg:person.014761523751.31 schema:affiliation grid-institutes:grid.465202.7
120 schema:familyName Paprzycki
121 schema:givenName Marcin
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014761523751.31
123 rdf:type schema:Person
124 sg:person.015745057111.08 schema:affiliation grid-institutes:grid.493309.4
125 schema:familyName Roeva
126 schema:givenName Olympia
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08
128 rdf:type schema:Person
129 grid-institutes:grid.424988.b schema:alternateName Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113, Sofia, Bulgaria
130 schema:name Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113, Sofia, Bulgaria
131 rdf:type schema:Organization
132 grid-institutes:grid.465202.7 schema:alternateName Systems Research Institute, Polish Academy of Sciences, Warsaw and Management Academy, Warsaw, Poland
133 schema:name Systems Research Institute, Polish Academy of Sciences, Warsaw and Management Academy, Warsaw, Poland
134 rdf:type schema:Organization
135 grid-institutes:grid.493309.4 schema:alternateName Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, Acad. G. Bonchev Str., bl.105, 1113, Sofia, Bulgaria
136 schema:name Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, Acad. G. Bonchev Str., bl.105, 1113, Sofia, Bulgaria
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...