A Spatio-temporal Bayesian Network Approach for Revealing Functional Ecological Networks in Fisheries View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Neda Trifonova , Daniel Duplisea , Andrew Kenny , Allan Tucker

ABSTRACT

Ecosystems consist of complex dynamic interactions among species and the environment, the understanding of which has implications for predicting the environmental response to changes in climate and biodiversity. Machine learning techniques can allow such complex, spatially varying interactions to be recovered from collected field data. In this study, we apply structure learning techniques to identify functional relationships between trophic groups of species that vary across space and time. Specifically, Bayesian networks are created on a window of data for each of the 20 geographically different and temporally varied sub-regions within an oceanic area. In addition, we explored the spatial and temporal variation of pre-defined functions (like predation, competition) that are generalisable by experts’ knowledge. We were able to discover meaningful ecological networks that were more precisely spatially-specific rather than temporally, as previously suggested for this region. To validate the discovered networks, we predict the biomass of the trophic groups by using dynamic Bayesian networks, and correcting for spatial autocorrelation by including a spatial node in our models. More... »

PAGES

298-308

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-12571-8_26

DOI

http://dx.doi.org/10.1007/978-3-319-12571-8_26

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008222839


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, Brunel University, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "Department of Computer Science, Brunel University, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trifonova", 
        "givenName": "Neda", 
        "id": "sg:person.07546752147.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07546752147.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fisheries and Oceans, Canada", 
          "id": "http://www.grid.ac/institutes/grid.23618.3e", 
          "name": [
            "Fisheries and Oceans, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duplisea", 
        "givenName": "Daniel", 
        "id": "sg:person.01372120642.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372120642.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, UK", 
          "id": "http://www.grid.ac/institutes/grid.14332.37", 
          "name": [
            "Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kenny", 
        "givenName": "Andrew", 
        "id": "sg:person.016226206037.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016226206037.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, Brunel University, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "Department of Computer Science, Brunel University, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tucker", 
        "givenName": "Allan", 
        "id": "sg:person.01044575645.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044575645.75"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Ecosystems consist of complex dynamic interactions among species and the environment, the understanding of which has implications for predicting the environmental response to changes in climate and biodiversity. Machine learning techniques can allow such complex, spatially varying interactions to be recovered from collected field data. In this study, we apply structure learning techniques to identify functional relationships between trophic groups of species that vary across space and time. Specifically, Bayesian networks are created on a window of data for each of the 20 geographically different and temporally varied sub-regions within an oceanic area. In addition, we explored the spatial and temporal variation of pre-defined functions (like predation, competition) that are generalisable by experts\u2019 knowledge. We were able to discover meaningful ecological networks that were more precisely spatially-specific rather than temporally, as previously suggested for this region. To validate the discovered networks, we predict the biomass of the trophic groups by using dynamic Bayesian networks, and correcting for spatial autocorrelation by including a spatial node in our models.", 
    "editor": [
      {
        "familyName": "Blockeel", 
        "givenName": "Hendrik", 
        "type": "Person"
      }, 
      {
        "familyName": "van Leeuwen", 
        "givenName": "Matthijs", 
        "type": "Person"
      }, 
      {
        "familyName": "Vinciotti", 
        "givenName": "Veronica", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-12571-8_26", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-12570-1", 
        "978-3-319-12571-8"
      ], 
      "name": "Advances in Intelligent Data Analysis XIII", 
      "type": "Book"
    }, 
    "keywords": [
      "trophic groups", 
      "ecological networks", 
      "functional ecological networks", 
      "collected field data", 
      "spatial autocorrelation", 
      "pre-defined functions", 
      "environmental responses", 
      "field data", 
      "Bayesian network approach", 
      "temporal variation", 
      "oceanic areas", 
      "species", 
      "functional relationship", 
      "complex dynamic interactions", 
      "biodiversity", 
      "ecosystems", 
      "fisheries", 
      "biomass", 
      "climate", 
      "autocorrelation", 
      "dynamic interaction", 
      "window of data", 
      "area", 
      "interaction", 
      "environment", 
      "network approach", 
      "variation", 
      "Bayesian networks", 
      "changes", 
      "region", 
      "spatial nodes", 
      "function", 
      "understanding", 
      "response", 
      "data", 
      "implications", 
      "dynamic Bayesian network", 
      "relationship", 
      "knowledge", 
      "addition", 
      "structure", 
      "network", 
      "approach", 
      "study", 
      "space", 
      "machine learning techniques", 
      "experts", 
      "group", 
      "model", 
      "time", 
      "learning techniques", 
      "technique", 
      "nodes", 
      "window", 
      "meaningful ecological networks", 
      "Spatio-temporal Bayesian Network Approach"
    ], 
    "name": "A Spatio-temporal Bayesian Network Approach for Revealing Functional Ecological Networks in Fisheries", 
    "pagination": "298-308", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008222839"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-12571-8_26"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-12571-8_26", 
      "https://app.dimensions.ai/details/publication/pub.1008222839"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_137.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-12571-8_26"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12571-8_26'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12571-8_26'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12571-8_26'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12571-8_26'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      23 PREDICATES      86 URIs      75 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-12571-8_26 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 anzsrc-for:05
4 anzsrc-for:0502
5 anzsrc-for:06
6 anzsrc-for:0602
7 schema:author N42a0998782a445b09065a887ad8a4960
8 schema:datePublished 2014
9 schema:datePublishedReg 2014-01-01
10 schema:description Ecosystems consist of complex dynamic interactions among species and the environment, the understanding of which has implications for predicting the environmental response to changes in climate and biodiversity. Machine learning techniques can allow such complex, spatially varying interactions to be recovered from collected field data. In this study, we apply structure learning techniques to identify functional relationships between trophic groups of species that vary across space and time. Specifically, Bayesian networks are created on a window of data for each of the 20 geographically different and temporally varied sub-regions within an oceanic area. In addition, we explored the spatial and temporal variation of pre-defined functions (like predation, competition) that are generalisable by experts’ knowledge. We were able to discover meaningful ecological networks that were more precisely spatially-specific rather than temporally, as previously suggested for this region. To validate the discovered networks, we predict the biomass of the trophic groups by using dynamic Bayesian networks, and correcting for spatial autocorrelation by including a spatial node in our models.
11 schema:editor Nb3ba4931c60442ff832bf129231b6c4f
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N164a528a4bfe440aadf568e635a858c9
16 schema:keywords Bayesian network approach
17 Bayesian networks
18 Spatio-temporal Bayesian Network Approach
19 addition
20 approach
21 area
22 autocorrelation
23 biodiversity
24 biomass
25 changes
26 climate
27 collected field data
28 complex dynamic interactions
29 data
30 dynamic Bayesian network
31 dynamic interaction
32 ecological networks
33 ecosystems
34 environment
35 environmental responses
36 experts
37 field data
38 fisheries
39 function
40 functional ecological networks
41 functional relationship
42 group
43 implications
44 interaction
45 knowledge
46 learning techniques
47 machine learning techniques
48 meaningful ecological networks
49 model
50 network
51 network approach
52 nodes
53 oceanic areas
54 pre-defined functions
55 region
56 relationship
57 response
58 space
59 spatial autocorrelation
60 spatial nodes
61 species
62 structure
63 study
64 technique
65 temporal variation
66 time
67 trophic groups
68 understanding
69 variation
70 window
71 window of data
72 schema:name A Spatio-temporal Bayesian Network Approach for Revealing Functional Ecological Networks in Fisheries
73 schema:pagination 298-308
74 schema:productId N7ec2508dee8c430c80177c7fd68a306a
75 Ndcd51f785f84455a9f2ba2906b6445d9
76 schema:publisher N62e6cf36e26e466b88a58a0ab4b812e9
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008222839
78 https://doi.org/10.1007/978-3-319-12571-8_26
79 schema:sdDatePublished 2022-01-01T19:08
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher Nf82f45ff5d8240d4ac9dfb7cfa5d8a76
82 schema:url https://doi.org/10.1007/978-3-319-12571-8_26
83 sgo:license sg:explorer/license/
84 sgo:sdDataset chapters
85 rdf:type schema:Chapter
86 N164a528a4bfe440aadf568e635a858c9 schema:isbn 978-3-319-12570-1
87 978-3-319-12571-8
88 schema:name Advances in Intelligent Data Analysis XIII
89 rdf:type schema:Book
90 N2b9cb36c6cb14ceabe4c33f28cb8955f rdf:first sg:person.01372120642.80
91 rdf:rest N87f02def5c4647a6a512727cf94b227b
92 N39b62bf006484a4ba739e1277177bf5c rdf:first Ne05051fdd4fb4f829cabee0c20344ede
93 rdf:rest rdf:nil
94 N42a0998782a445b09065a887ad8a4960 rdf:first sg:person.07546752147.78
95 rdf:rest N2b9cb36c6cb14ceabe4c33f28cb8955f
96 N62e6cf36e26e466b88a58a0ab4b812e9 schema:name Springer Nature
97 rdf:type schema:Organisation
98 N70d6b9bd6a4e4fc0ae30ee95689c7240 schema:familyName van Leeuwen
99 schema:givenName Matthijs
100 rdf:type schema:Person
101 N7ec2508dee8c430c80177c7fd68a306a schema:name doi
102 schema:value 10.1007/978-3-319-12571-8_26
103 rdf:type schema:PropertyValue
104 N87f02def5c4647a6a512727cf94b227b rdf:first sg:person.016226206037.17
105 rdf:rest N9a990cadf08741579c782a310c513a59
106 N9a990cadf08741579c782a310c513a59 rdf:first sg:person.01044575645.75
107 rdf:rest rdf:nil
108 Nb3ba4931c60442ff832bf129231b6c4f rdf:first Ne4120fd3dae64d79a12c77f775642fef
109 rdf:rest Nc3f9f9b47fd244e5b870ca2dbdf0cf11
110 Nc3f9f9b47fd244e5b870ca2dbdf0cf11 rdf:first N70d6b9bd6a4e4fc0ae30ee95689c7240
111 rdf:rest N39b62bf006484a4ba739e1277177bf5c
112 Ndcd51f785f84455a9f2ba2906b6445d9 schema:name dimensions_id
113 schema:value pub.1008222839
114 rdf:type schema:PropertyValue
115 Ne05051fdd4fb4f829cabee0c20344ede schema:familyName Vinciotti
116 schema:givenName Veronica
117 rdf:type schema:Person
118 Ne4120fd3dae64d79a12c77f775642fef schema:familyName Blockeel
119 schema:givenName Hendrik
120 rdf:type schema:Person
121 Nf82f45ff5d8240d4ac9dfb7cfa5d8a76 schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
124 schema:name Mathematical Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
127 schema:name Statistics
128 rdf:type schema:DefinedTerm
129 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
130 schema:name Environmental Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
133 schema:name Environmental Science and Management
134 rdf:type schema:DefinedTerm
135 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
136 schema:name Biological Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
139 schema:name Ecology
140 rdf:type schema:DefinedTerm
141 sg:person.01044575645.75 schema:affiliation grid-institutes:grid.7728.a
142 schema:familyName Tucker
143 schema:givenName Allan
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044575645.75
145 rdf:type schema:Person
146 sg:person.01372120642.80 schema:affiliation grid-institutes:grid.23618.3e
147 schema:familyName Duplisea
148 schema:givenName Daniel
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372120642.80
150 rdf:type schema:Person
151 sg:person.016226206037.17 schema:affiliation grid-institutes:grid.14332.37
152 schema:familyName Kenny
153 schema:givenName Andrew
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016226206037.17
155 rdf:type schema:Person
156 sg:person.07546752147.78 schema:affiliation grid-institutes:grid.7728.a
157 schema:familyName Trifonova
158 schema:givenName Neda
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07546752147.78
160 rdf:type schema:Person
161 grid-institutes:grid.14332.37 schema:alternateName Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, UK
162 schema:name Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, UK
163 rdf:type schema:Organization
164 grid-institutes:grid.23618.3e schema:alternateName Fisheries and Oceans, Canada
165 schema:name Fisheries and Oceans, Canada
166 rdf:type schema:Organization
167 grid-institutes:grid.7728.a schema:alternateName Department of Computer Science, Brunel University, London, UK
168 schema:name Department of Computer Science, Brunel University, London, UK
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...