Ontology type: schema:Chapter Open Access: True
2015
AUTHORSMaëva Biret , Michel Broniatowski , Zansheng Cao
ABSTRACTThis paper states asymptotic equivalents for the moments of the Esscher transform of a distribution on \(\mathbb {R}\) with smooth density in the upper tail. As a by-product it provides a tail approximation for its moment generating function, and shows that the Esscher transforms have a Gaussian behavior for large values of the parameter. More... »
PAGES67-92
Mathematical Statistics and Limit Theorems
ISBN
978-3-319-12441-4
978-3-319-12442-1
http://scigraph.springernature.com/pub.10.1007/978-3-319-12442-1_5
DOIhttp://dx.doi.org/10.1007/978-3-319-12442-1_5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1040112752
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Immunology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"Snecma Villaroche, Rond-Point Ren\u00e9 Ravaud-R\u00e9au, Moissy-cramayel, France"
],
"type": "Organization"
},
"familyName": "Biret",
"givenName": "Ma\u00ebva",
"id": "sg:person.07377552146.87",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07377552146.87"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire de Statistique Th\u00e9orique et Appliqu\u00e9e",
"id": "https://www.grid.ac/institutes/grid.463964.a",
"name": [
"LSTA, Universit\u00e9 Pierre et Marie Curie, 5 Place Jussieu, Paris, France"
],
"type": "Organization"
},
"familyName": "Broniatowski",
"givenName": "Michel",
"id": "sg:person.014502762241.99",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014502762241.99"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institut de Recherche Math\u00e9matique Avanc\u00e9e",
"id": "https://www.grid.ac/institutes/grid.469947.1",
"name": [
"IRMA, Universit\u00e9 de Strasbourg, 7 Rue Ren\u00e9 Descartes, Strasbourg, France"
],
"type": "Organization"
},
"familyName": "Cao",
"givenName": "Zansheng",
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00534992",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016514633",
"https://doi.org/10.1007/bf00534992"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00534992",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016514633",
"https://doi.org/10.1007/bf00534992"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02213574",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021120640",
"https://doi.org/10.1007/bf02213574"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02213574",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021120640",
"https://doi.org/10.1007/bf02213574"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11202-008-0078-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037881779",
"https://doi.org/10.1007/s11202-008-0078-9"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1112/plms/s3-66.3.568",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043447501"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1006/aima.1995.1062",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052771803"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/cbo9780511721434",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098702033"
],
"type": "CreativeWork"
}
],
"datePublished": "2015",
"datePublishedReg": "2015-01-01",
"description": "This paper states asymptotic equivalents for the moments of the Esscher transform of a distribution on \\(\\mathbb {R}\\) with smooth density in the upper tail. As a by-product it provides a tail approximation for its moment generating function, and shows that the Esscher transforms have a Gaussian behavior for large values of the parameter.",
"editor": [
{
"familyName": "Hallin",
"givenName": "Marc",
"type": "Person"
},
{
"familyName": "Mason",
"givenName": "David M.",
"type": "Person"
},
{
"familyName": "Pfeifer",
"givenName": "Dietmar",
"type": "Person"
},
{
"familyName": "Steinebach",
"givenName": "Josef G.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-12442-1_5",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-319-12441-4",
"978-3-319-12442-1"
],
"name": "Mathematical Statistics and Limit Theorems",
"type": "Book"
},
"name": "A Sharp Abelian Theorem for the Laplace Transform",
"pagination": "67-92",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-12442-1_5"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"bf15430931c6a6193e13c08355ea2fc388c7c4478924b3c737ac4d80c4179eb6"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1040112752"
]
}
],
"publisher": {
"location": "Cham",
"name": "Springer International Publishing",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-12442-1_5",
"https://app.dimensions.ai/details/publication/pub.1040112752"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T11:36",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000268.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-319-12442-1_5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12442-1_5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12442-1_5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12442-1_5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12442-1_5'
This table displays all metadata directly associated to this object as RDF triples.
119 TRIPLES
23 PREDICATES
33 URIs
20 LITERALS
8 BLANK NODES