Ontology type: schema:Chapter
2015
AUTHORS ABSTRACTThis paper is devoted to the estimation of the intensity and the density of jumps for \(D\left[ 0,1\right] \)-valued random variables and the construction of detectors for constant or random jumps. Limit theorems are obtained in the context of continuous observations or high-frequency data. Applications to jumps for \(D\left[ 0,1\right] \)-valued moving average and autoregressive processes are considered. We also study the special case where there is an infinity of jumps. Thus, our approach is somewhat different from that which consists of studying jumps in semimartingales. More... »
PAGES41-66
Mathematical Statistics and Limit Theorems
ISBN
978-3-319-12441-4
978-3-319-12442-1
http://scigraph.springernature.com/pub.10.1007/978-3-319-12442-1_4
DOIhttp://dx.doi.org/10.1007/978-3-319-12442-1_4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1017525741
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Laboratoire de Statistique Th\u00e9orique et Appliqu\u00e9e",
"id": "https://www.grid.ac/institutes/grid.463964.a",
"name": [
"LSTA, Universit\u00e9 Pierre et Marie Curie - Paris 6, Paris, France"
],
"type": "Organization"
},
"familyName": "Bosq",
"givenName": "Denis",
"id": "sg:person.015335055755.62",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015335055755.62"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1006/jmva.1998.1785",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007103013"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jmva.2013.11.013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014221017"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.spl.2005.10.035",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017255780"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1034653958",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4419-0320-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034653958",
"https://doi.org/10.1007/978-1-4419-0320-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4419-0320-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034653958",
"https://doi.org/10.1007/978-1-4419-0320-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-1154-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036575891",
"https://doi.org/10.1007/978-1-4612-1154-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-1154-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036575891",
"https://doi.org/10.1007/978-1-4612-1154-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-5156-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037170055",
"https://doi.org/10.1007/978-1-4612-5156-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-5156-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037170055",
"https://doi.org/10.1007/978-1-4612-5156-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-1384-0_30",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037854305",
"https://doi.org/10.1007/978-1-4612-1384-0_30"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-1384-0_30",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037854305",
"https://doi.org/10.1007/978-1-4612-1384-0_30"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1037887112",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4614-3655-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037887112",
"https://doi.org/10.1007/978-1-4614-3655-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4614-3655-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037887112",
"https://doi.org/10.1007/978-1-4614-3655-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-2539-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038602576",
"https://doi.org/10.1007/978-1-4757-2539-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-2539-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038602576",
"https://doi.org/10.1007/978-1-4757-2539-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00533047",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040729850",
"https://doi.org/10.1007/bf00533047"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00533047",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040729850",
"https://doi.org/10.1007/bf00533047"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0167-7152(93)90004-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050096246"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-1718-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052093296",
"https://doi.org/10.1007/978-1-4612-1718-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-1718-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052093296",
"https://doi.org/10.1007/978-1-4612-1718-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/1108005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062864437"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/aop/1176995150",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064405150"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4615-8162-8_8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1089724303",
"https://doi.org/10.1007/978-1-4615-8162-8_8"
],
"type": "CreativeWork"
}
],
"datePublished": "2015",
"datePublishedReg": "2015-01-01",
"description": "This paper is devoted to the estimation of the intensity and the density of jumps for \\(D\\left[ 0,1\\right] \\)-valued random variables and the construction of detectors for constant or random jumps. Limit theorems are obtained in the context of continuous observations or high-frequency data. Applications to jumps for \\(D\\left[ 0,1\\right] \\)-valued moving average and autoregressive processes are considered. We also study the special case where there is an infinity of jumps. Thus, our approach is somewhat different from that which consists of studying jumps in semimartingales.",
"editor": [
{
"familyName": "Hallin",
"givenName": "Marc",
"type": "Person"
},
{
"familyName": "Mason",
"givenName": "David M.",
"type": "Person"
},
{
"familyName": "Pfeifer",
"givenName": "Dietmar",
"type": "Person"
},
{
"familyName": "Steinebach",
"givenName": "Josef G.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-12442-1_4",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-12441-4",
"978-3-319-12442-1"
],
"name": "Mathematical Statistics and Limit Theorems",
"type": "Book"
},
"name": "Estimating and Detecting Jumps. Applications to $$D\\left[ 0,1\\right] $$ D 0 , 1 -Valued Linear Processes",
"pagination": "41-66",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-12442-1_4"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"537ff1fbcca3201d863ad23355037a323a5afbd37d2c8afd5ea2222ded5f586f"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1017525741"
]
}
],
"publisher": {
"location": "Cham",
"name": "Springer International Publishing",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-12442-1_4",
"https://app.dimensions.ai/details/publication/pub.1017525741"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T20:05",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000254.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-319-12442-1_4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12442-1_4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12442-1_4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12442-1_4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12442-1_4'
This table displays all metadata directly associated to this object as RDF triples.
138 TRIPLES
23 PREDICATES
44 URIs
20 LITERALS
8 BLANK NODES