TopCrowd View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Christian Nieke , Ulrich Güntzer , Wolf-Tilo Balke

ABSTRACT

Building databases and information systems over data extracted from heterogeneous sources like the Web poses a severe challenge: most data is incomplete and thus difficult to process in structured queries. This is especially true for sophisticated query techniques like Top-k querying where rankings are aggregated over several sources. The intelligent combination of efficient data processing algorithms with crowdsourced database operators promises to alleviate the situation. Yet the scalability of such combined processing is doubtful. We present TopCrowd, a novel crowd-enabled Top-k query processing algorithm that works effectively on incomplete data, while tightly controlling query processing costs in terms of response time and money spent for crowdsourcing. TopCrowd features probabilistic pruning rules for drastically reduced numbers of crowd accesses (up to 95%), while effectively balancing querying costs and result correctness. Extensive experiments show the benefit of our technique. More... »

PAGES

122-135

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-12206-9_10

DOI

http://dx.doi.org/10.1007/978-3-319-12206-9_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000831803


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IFIS, TU Braunschweig, Braunschweig, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6738.a", 
          "name": [
            "IFIS, TU Braunschweig, Braunschweig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nieke", 
        "givenName": "Christian", 
        "id": "sg:person.013005404255.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013005404255.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Inst. f. Informatik, Universit\u00e4t T\u00fcbingen,T\u00fcbingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.10392.39", 
          "name": [
            "Inst. f. Informatik, Universit\u00e4t T\u00fcbingen,T\u00fcbingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00fcntzer", 
        "givenName": "Ulrich", 
        "id": "sg:person.013324511711.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013324511711.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IFIS, TU Braunschweig, Braunschweig, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6738.a", 
          "name": [
            "IFIS, TU Braunschweig, Braunschweig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balke", 
        "givenName": "Wolf-Tilo", 
        "id": "sg:person.014313642615.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313642615.12"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Building databases and information systems over data extracted from heterogeneous sources like the Web poses a severe challenge: most data is incomplete and thus difficult to process in structured queries. This is especially true for sophisticated query techniques like Top-k querying where rankings are aggregated over several sources. The intelligent combination of efficient data processing algorithms with crowdsourced database operators promises to alleviate the situation. Yet the scalability of such combined processing is doubtful. We present TopCrowd, a novel crowd-enabled Top-k query processing algorithm that works effectively on incomplete data, while tightly controlling query processing costs in terms of response time and money spent for crowdsourcing. TopCrowd features probabilistic pruning rules for drastically reduced numbers of crowd accesses (up to 95%), while effectively balancing querying costs and result correctness. Extensive experiments show the benefit of our technique.", 
    "editor": [
      {
        "familyName": "Yu", 
        "givenName": "Eric", 
        "type": "Person"
      }, 
      {
        "familyName": "Dobbie", 
        "givenName": "Gillian", 
        "type": "Person"
      }, 
      {
        "familyName": "Jarke", 
        "givenName": "Matthias", 
        "type": "Person"
      }, 
      {
        "familyName": "Purao", 
        "givenName": "Sandeep", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-12206-9_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-12205-2", 
        "978-3-319-12206-9"
      ], 
      "name": "Conceptual Modeling", 
      "type": "Book"
    }, 
    "keywords": [
      "query processing algorithm", 
      "query processing cost", 
      "number of crowds", 
      "structured queries", 
      "query techniques", 
      "database operators", 
      "Extensive experiments", 
      "efficient data", 
      "heterogeneous sources", 
      "pruning rules", 
      "processing algorithms", 
      "information systems", 
      "intelligent combination", 
      "building database", 
      "incomplete data", 
      "processing cost", 
      "algorithm", 
      "response time", 
      "severe challenges", 
      "querying", 
      "queries", 
      "scalability", 
      "correctness", 
      "Combined processing", 
      "Web", 
      "crowd", 
      "cost", 
      "technique", 
      "database", 
      "processing", 
      "top", 
      "rules", 
      "data", 
      "operators", 
      "ranking", 
      "system", 
      "challenges", 
      "most data", 
      "situation", 
      "experiments", 
      "benefits", 
      "terms", 
      "number", 
      "time", 
      "source", 
      "money", 
      "combination", 
      "sophisticated query techniques", 
      "crowdsourced database operators", 
      "such combined processing", 
      "TopCrowd", 
      "novel crowd-enabled Top", 
      "crowd-enabled Top", 
      "probabilistic pruning rules"
    ], 
    "name": "TopCrowd", 
    "pagination": "122-135", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000831803"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-12206-9_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-12206-9_10", 
      "https://app.dimensions.ai/details/publication/pub.1000831803"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_85.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-12206-9_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12206-9_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12206-9_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12206-9_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12206-9_10'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      23 PREDICATES      80 URIs      72 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-12206-9_10 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 schema:author Nd135f0660fc2490bb7b7d702e84ef1e2
5 schema:datePublished 2014
6 schema:datePublishedReg 2014-01-01
7 schema:description Building databases and information systems over data extracted from heterogeneous sources like the Web poses a severe challenge: most data is incomplete and thus difficult to process in structured queries. This is especially true for sophisticated query techniques like Top-k querying where rankings are aggregated over several sources. The intelligent combination of efficient data processing algorithms with crowdsourced database operators promises to alleviate the situation. Yet the scalability of such combined processing is doubtful. We present TopCrowd, a novel crowd-enabled Top-k query processing algorithm that works effectively on incomplete data, while tightly controlling query processing costs in terms of response time and money spent for crowdsourcing. TopCrowd features probabilistic pruning rules for drastically reduced numbers of crowd accesses (up to 95%), while effectively balancing querying costs and result correctness. Extensive experiments show the benefit of our technique.
8 schema:editor N84355b1d1ab549dc8bc37526f9040aed
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N5f0aa88923614d24bfcd444103d9d7e5
13 schema:keywords Combined processing
14 Extensive experiments
15 TopCrowd
16 Web
17 algorithm
18 benefits
19 building database
20 challenges
21 combination
22 correctness
23 cost
24 crowd
25 crowd-enabled Top
26 crowdsourced database operators
27 data
28 database
29 database operators
30 efficient data
31 experiments
32 heterogeneous sources
33 incomplete data
34 information systems
35 intelligent combination
36 money
37 most data
38 novel crowd-enabled Top
39 number
40 number of crowds
41 operators
42 probabilistic pruning rules
43 processing
44 processing algorithms
45 processing cost
46 pruning rules
47 queries
48 query processing algorithm
49 query processing cost
50 query techniques
51 querying
52 ranking
53 response time
54 rules
55 scalability
56 severe challenges
57 situation
58 sophisticated query techniques
59 source
60 structured queries
61 such combined processing
62 system
63 technique
64 terms
65 time
66 top
67 schema:name TopCrowd
68 schema:pagination 122-135
69 schema:productId N766e24993aa348b5af7db9aa2fd3944b
70 Ne56b56c8628c4e9ba83888063c18932e
71 schema:publisher N400af0eb32164be1882d5ada4e51d2df
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000831803
73 https://doi.org/10.1007/978-3-319-12206-9_10
74 schema:sdDatePublished 2022-01-01T19:28
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N5ccc3bf388a7407bbddb00069678072a
77 schema:url https://doi.org/10.1007/978-3-319-12206-9_10
78 sgo:license sg:explorer/license/
79 sgo:sdDataset chapters
80 rdf:type schema:Chapter
81 N0032066b07cf472b95d5a3fba57fd843 rdf:first N60ce43c8e9aa424195dad70aa76a4664
82 rdf:rest rdf:nil
83 N2fe6a983121943caab059682c919aa7c schema:familyName Yu
84 schema:givenName Eric
85 rdf:type schema:Person
86 N400af0eb32164be1882d5ada4e51d2df schema:name Springer Nature
87 rdf:type schema:Organisation
88 N5abe7b72caf64dfd817307aa1ecb60eb rdf:first sg:person.014313642615.12
89 rdf:rest rdf:nil
90 N5ccc3bf388a7407bbddb00069678072a schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N5f0aa88923614d24bfcd444103d9d7e5 schema:isbn 978-3-319-12205-2
93 978-3-319-12206-9
94 schema:name Conceptual Modeling
95 rdf:type schema:Book
96 N60ce43c8e9aa424195dad70aa76a4664 schema:familyName Purao
97 schema:givenName Sandeep
98 rdf:type schema:Person
99 N766e24993aa348b5af7db9aa2fd3944b schema:name doi
100 schema:value 10.1007/978-3-319-12206-9_10
101 rdf:type schema:PropertyValue
102 N7ca20214862d417287949b7e79795bbe rdf:first Ndc7d925b2b9445319cb3d0e4b999138e
103 rdf:rest N0032066b07cf472b95d5a3fba57fd843
104 N84355b1d1ab549dc8bc37526f9040aed rdf:first N2fe6a983121943caab059682c919aa7c
105 rdf:rest Na2b34226f49e4975bb36a94df5d0fc0a
106 Na2b34226f49e4975bb36a94df5d0fc0a rdf:first Nbe9bd04c123e42d5b3aa82e16339a85a
107 rdf:rest N7ca20214862d417287949b7e79795bbe
108 Nbe9bd04c123e42d5b3aa82e16339a85a schema:familyName Dobbie
109 schema:givenName Gillian
110 rdf:type schema:Person
111 Nd135f0660fc2490bb7b7d702e84ef1e2 rdf:first sg:person.013005404255.10
112 rdf:rest Ne7ab8900c50e4103a73dab729d67526d
113 Ndc7d925b2b9445319cb3d0e4b999138e schema:familyName Jarke
114 schema:givenName Matthias
115 rdf:type schema:Person
116 Ne56b56c8628c4e9ba83888063c18932e schema:name dimensions_id
117 schema:value pub.1000831803
118 rdf:type schema:PropertyValue
119 Ne7ab8900c50e4103a73dab729d67526d rdf:first sg:person.013324511711.75
120 rdf:rest N5abe7b72caf64dfd817307aa1ecb60eb
121 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
122 schema:name Information and Computing Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
125 schema:name Artificial Intelligence and Image Processing
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
128 schema:name Information Systems
129 rdf:type schema:DefinedTerm
130 sg:person.013005404255.10 schema:affiliation grid-institutes:grid.6738.a
131 schema:familyName Nieke
132 schema:givenName Christian
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013005404255.10
134 rdf:type schema:Person
135 sg:person.013324511711.75 schema:affiliation grid-institutes:grid.10392.39
136 schema:familyName Güntzer
137 schema:givenName Ulrich
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013324511711.75
139 rdf:type schema:Person
140 sg:person.014313642615.12 schema:affiliation grid-institutes:grid.6738.a
141 schema:familyName Balke
142 schema:givenName Wolf-Tilo
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313642615.12
144 rdf:type schema:Person
145 grid-institutes:grid.10392.39 schema:alternateName Inst. f. Informatik, Universität Tübingen,Tübingen, Germany
146 schema:name Inst. f. Informatik, Universität Tübingen,Tübingen, Germany
147 rdf:type schema:Organization
148 grid-institutes:grid.6738.a schema:alternateName IFIS, TU Braunschweig, Braunschweig, Germany
149 schema:name IFIS, TU Braunschweig, Braunschweig, Germany
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...