Incorporating Regime Metrics into Latent Variable Dynamic Models to Detect Early-Warning Signals of Functional Changes in Fisheries Ecology View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Neda Trifonova , Daniel Duplisea , Andrew Kenny , David Maxwell , Allan Tucker

ABSTRACT

In this study, dynamic Bayesian networks have been applied to predict future biomass of geographically different but functionally equivalent fish species. A latent variable is incorporated to model functional collapse, where the underlying food web structure dramatically changes irrevocably (known as a regime shift). We examined if the use of a hidden variable can reflect changes in the trophic dynamics of the system and also whether the inclusion of recognised statistical metrics would improve predictive accuracy of the dynamic models. The hidden variable appears to reflect some of the metrics’ characteristics in terms of identifying regime shifts that are known to have occurred. It also appears to capture changes in the variance of different species biomass. Including metrics in the models had an impact on predictive accuracy but only in some cases. Finally, we explore whether exploiting expert knowledge in the form of diet matrices based upon stomach surveys is a better approach to learning model structure than using biomass data alone when predicting food web dynamics. A non-parametric bootstrap in combination with a greedy search algorithm was applied to estimate the confidence of features of networks learned from the data, allowing us to identify pairwise relations of high confidence between species. More... »

PAGES

301-312

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-11812-3_26

DOI

http://dx.doi.org/10.1007/978-3-319-11812-3_26

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034554506


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, Brunel University, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "Department of Computer Science, Brunel University, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trifonova", 
        "givenName": "Neda", 
        "id": "sg:person.07546752147.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07546752147.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fisheries and Oceans, Canada", 
          "id": "http://www.grid.ac/institutes/grid.23618.3e", 
          "name": [
            "Fisheries and Oceans, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duplisea", 
        "givenName": "Daniel", 
        "id": "sg:person.01372120642.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372120642.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, UK", 
          "id": "http://www.grid.ac/institutes/grid.14332.37", 
          "name": [
            "Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kenny", 
        "givenName": "Andrew", 
        "id": "sg:person.016226206037.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016226206037.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, UK", 
          "id": "http://www.grid.ac/institutes/grid.14332.37", 
          "name": [
            "Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maxwell", 
        "givenName": "David", 
        "id": "sg:person.013210215534.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013210215534.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, Brunel University, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "Department of Computer Science, Brunel University, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tucker", 
        "givenName": "Allan", 
        "id": "sg:person.01044575645.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044575645.75"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "In this study, dynamic Bayesian networks have been applied to predict future biomass of geographically different but functionally equivalent fish species. A latent variable is incorporated to model functional collapse, where the underlying food web structure dramatically changes irrevocably (known as a regime shift). We examined if the use of a hidden variable can reflect changes in the trophic dynamics of the system and also whether the inclusion of recognised statistical metrics would improve predictive accuracy of the dynamic models. The hidden variable appears to reflect some of the metrics\u2019 characteristics in terms of identifying regime shifts that are known to have occurred. It also appears to capture changes in the variance of different species biomass. Including metrics in the models had an impact on predictive accuracy but only in some cases. Finally, we explore whether exploiting expert knowledge in the form of diet matrices based upon stomach surveys is a better approach to learning model structure than using biomass data alone when predicting food web dynamics. A non-parametric bootstrap in combination with a greedy search algorithm was applied to estimate the confidence of features of networks learned from the data, allowing us to identify pairwise relations of high confidence between species.", 
    "editor": [
      {
        "familyName": "D\u017eeroski", 
        "givenName": "Sa\u0161o", 
        "type": "Person"
      }, 
      {
        "familyName": "Panov", 
        "givenName": "Pan\u010de", 
        "type": "Person"
      }, 
      {
        "familyName": "Kocev", 
        "givenName": "Dragi", 
        "type": "Person"
      }, 
      {
        "familyName": "Todorovski", 
        "givenName": "Ljup\u010do", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-11812-3_26", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-11811-6", 
        "978-3-319-11812-3"
      ], 
      "name": "Discovery Science", 
      "type": "Book"
    }, 
    "keywords": [
      "hidden variables", 
      "dynamic Bayesian network", 
      "dynamic model", 
      "non-parametric bootstrap", 
      "Bayesian networks", 
      "latent variables", 
      "statistical metrics", 
      "model structure", 
      "greedy search algorithm", 
      "search algorithm", 
      "predictive accuracy", 
      "variables", 
      "dynamics", 
      "pairwise relations", 
      "metrics", 
      "expert knowledge", 
      "functional collapse", 
      "bootstrap", 
      "network", 
      "diet matrix", 
      "model", 
      "accuracy", 
      "algorithm", 
      "future biomass", 
      "matrix", 
      "fisheries ecology", 
      "best approach", 
      "regime shifts", 
      "biomass data", 
      "approach", 
      "system", 
      "terms", 
      "variance", 
      "high confidence", 
      "warning signals", 
      "signals", 
      "structure", 
      "species biomass", 
      "form", 
      "data", 
      "regime", 
      "cases", 
      "confidence", 
      "web dynamics", 
      "relation", 
      "features", 
      "use", 
      "inclusion", 
      "combination", 
      "characteristics", 
      "food web dynamics", 
      "ecology", 
      "knowledge", 
      "web structure", 
      "collapse", 
      "food web structure", 
      "survey", 
      "impact", 
      "study", 
      "changes", 
      "shift", 
      "fish species", 
      "trophic dynamics", 
      "biomass", 
      "species", 
      "functional changes", 
      "equivalent fish species", 
      "different species biomass", 
      "stomach surveys", 
      "confidence of features", 
      "Latent Variable Dynamic Models", 
      "Variable Dynamic Models"
    ], 
    "name": "Incorporating Regime Metrics into Latent Variable Dynamic Models to Detect Early-Warning Signals of Functional Changes in Fisheries Ecology", 
    "pagination": "301-312", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034554506"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-11812-3_26"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-11812-3_26", 
      "https://app.dimensions.ai/details/publication/pub.1034554506"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_421.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-11812-3_26"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11812-3_26'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11812-3_26'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11812-3_26'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11812-3_26'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      23 PREDICATES      98 URIs      91 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-11812-3_26 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N500fa80ce32b4bab8294a88a8b2c1fd3
4 schema:datePublished 2014
5 schema:datePublishedReg 2014-01-01
6 schema:description In this study, dynamic Bayesian networks have been applied to predict future biomass of geographically different but functionally equivalent fish species. A latent variable is incorporated to model functional collapse, where the underlying food web structure dramatically changes irrevocably (known as a regime shift). We examined if the use of a hidden variable can reflect changes in the trophic dynamics of the system and also whether the inclusion of recognised statistical metrics would improve predictive accuracy of the dynamic models. The hidden variable appears to reflect some of the metrics’ characteristics in terms of identifying regime shifts that are known to have occurred. It also appears to capture changes in the variance of different species biomass. Including metrics in the models had an impact on predictive accuracy but only in some cases. Finally, we explore whether exploiting expert knowledge in the form of diet matrices based upon stomach surveys is a better approach to learning model structure than using biomass data alone when predicting food web dynamics. A non-parametric bootstrap in combination with a greedy search algorithm was applied to estimate the confidence of features of networks learned from the data, allowing us to identify pairwise relations of high confidence between species.
7 schema:editor N5d485fba99414eb2b9b853d82ec722ce
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N582f117b551e432c8fa95a578345df79
12 schema:keywords Bayesian networks
13 Latent Variable Dynamic Models
14 Variable Dynamic Models
15 accuracy
16 algorithm
17 approach
18 best approach
19 biomass
20 biomass data
21 bootstrap
22 cases
23 changes
24 characteristics
25 collapse
26 combination
27 confidence
28 confidence of features
29 data
30 diet matrix
31 different species biomass
32 dynamic Bayesian network
33 dynamic model
34 dynamics
35 ecology
36 equivalent fish species
37 expert knowledge
38 features
39 fish species
40 fisheries ecology
41 food web dynamics
42 food web structure
43 form
44 functional changes
45 functional collapse
46 future biomass
47 greedy search algorithm
48 hidden variables
49 high confidence
50 impact
51 inclusion
52 knowledge
53 latent variables
54 matrix
55 metrics
56 model
57 model structure
58 network
59 non-parametric bootstrap
60 pairwise relations
61 predictive accuracy
62 regime
63 regime shifts
64 relation
65 search algorithm
66 shift
67 signals
68 species
69 species biomass
70 statistical metrics
71 stomach surveys
72 structure
73 study
74 survey
75 system
76 terms
77 trophic dynamics
78 use
79 variables
80 variance
81 warning signals
82 web dynamics
83 web structure
84 schema:name Incorporating Regime Metrics into Latent Variable Dynamic Models to Detect Early-Warning Signals of Functional Changes in Fisheries Ecology
85 schema:pagination 301-312
86 schema:productId N1fda3ddd9db04386a42f1ccbf767476a
87 Nd67c997d42d843cf8646e8c56281ce20
88 schema:publisher N897be5841a6746f3a43bf16b523d757e
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034554506
90 https://doi.org/10.1007/978-3-319-11812-3_26
91 schema:sdDatePublished 2022-01-01T19:24
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher Nc8f549c11363478798a63b90bf953cbf
94 schema:url https://doi.org/10.1007/978-3-319-11812-3_26
95 sgo:license sg:explorer/license/
96 sgo:sdDataset chapters
97 rdf:type schema:Chapter
98 N03022fd3a36143cba381dc48cf39ed60 rdf:first sg:person.013210215534.75
99 rdf:rest N0e57a4287fd94f679031530f8388585e
100 N06a48d20c50b48bdb858b0df7844b4e5 schema:familyName Panov
101 schema:givenName Panče
102 rdf:type schema:Person
103 N0e57a4287fd94f679031530f8388585e rdf:first sg:person.01044575645.75
104 rdf:rest rdf:nil
105 N159db66fe9c149d1a27eb3502ace3853 schema:familyName Džeroski
106 schema:givenName Sašo
107 rdf:type schema:Person
108 N1e6bf55d5dde446a9cbb2a806ce13368 rdf:first N06a48d20c50b48bdb858b0df7844b4e5
109 rdf:rest N5e0b5ea8e0374bf19ba2807659b02db7
110 N1fda3ddd9db04386a42f1ccbf767476a schema:name doi
111 schema:value 10.1007/978-3-319-11812-3_26
112 rdf:type schema:PropertyValue
113 N34342e6162094028bcd313138ec32d7b schema:familyName Todorovski
114 schema:givenName Ljupčo
115 rdf:type schema:Person
116 N437d52d62d93416983144dd2ce4ef900 rdf:first sg:person.01372120642.80
117 rdf:rest Nca43b6a72f8340a2b46d89344e063301
118 N4d3d025a24ab4e7c8ae1f33ab2b263e2 rdf:first N34342e6162094028bcd313138ec32d7b
119 rdf:rest rdf:nil
120 N500fa80ce32b4bab8294a88a8b2c1fd3 rdf:first sg:person.07546752147.78
121 rdf:rest N437d52d62d93416983144dd2ce4ef900
122 N582f117b551e432c8fa95a578345df79 schema:isbn 978-3-319-11811-6
123 978-3-319-11812-3
124 schema:name Discovery Science
125 rdf:type schema:Book
126 N5d485fba99414eb2b9b853d82ec722ce rdf:first N159db66fe9c149d1a27eb3502ace3853
127 rdf:rest N1e6bf55d5dde446a9cbb2a806ce13368
128 N5e0b5ea8e0374bf19ba2807659b02db7 rdf:first Na954491dd79c4e0d93b6572d651333b2
129 rdf:rest N4d3d025a24ab4e7c8ae1f33ab2b263e2
130 N897be5841a6746f3a43bf16b523d757e schema:name Springer Nature
131 rdf:type schema:Organisation
132 Na954491dd79c4e0d93b6572d651333b2 schema:familyName Kocev
133 schema:givenName Dragi
134 rdf:type schema:Person
135 Nc8f549c11363478798a63b90bf953cbf schema:name Springer Nature - SN SciGraph project
136 rdf:type schema:Organization
137 Nca43b6a72f8340a2b46d89344e063301 rdf:first sg:person.016226206037.17
138 rdf:rest N03022fd3a36143cba381dc48cf39ed60
139 Nd67c997d42d843cf8646e8c56281ce20 schema:name dimensions_id
140 schema:value pub.1034554506
141 rdf:type schema:PropertyValue
142 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
143 schema:name Mathematical Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
146 schema:name Statistics
147 rdf:type schema:DefinedTerm
148 sg:person.01044575645.75 schema:affiliation grid-institutes:grid.7728.a
149 schema:familyName Tucker
150 schema:givenName Allan
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044575645.75
152 rdf:type schema:Person
153 sg:person.013210215534.75 schema:affiliation grid-institutes:grid.14332.37
154 schema:familyName Maxwell
155 schema:givenName David
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013210215534.75
157 rdf:type schema:Person
158 sg:person.01372120642.80 schema:affiliation grid-institutes:grid.23618.3e
159 schema:familyName Duplisea
160 schema:givenName Daniel
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372120642.80
162 rdf:type schema:Person
163 sg:person.016226206037.17 schema:affiliation grid-institutes:grid.14332.37
164 schema:familyName Kenny
165 schema:givenName Andrew
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016226206037.17
167 rdf:type schema:Person
168 sg:person.07546752147.78 schema:affiliation grid-institutes:grid.7728.a
169 schema:familyName Trifonova
170 schema:givenName Neda
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07546752147.78
172 rdf:type schema:Person
173 grid-institutes:grid.14332.37 schema:alternateName Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, UK
174 schema:name Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, UK
175 rdf:type schema:Organization
176 grid-institutes:grid.23618.3e schema:alternateName Fisheries and Oceans, Canada
177 schema:name Fisheries and Oceans, Canada
178 rdf:type schema:Organization
179 grid-institutes:grid.7728.a schema:alternateName Department of Computer Science, Brunel University, London, UK
180 schema:name Department of Computer Science, Brunel University, London, UK
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...