A Visual-Based Driver Distraction Recognition and Detection Using Random Forest View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Amira Ragab , Celine Craye , Mohamed S. Kamel , Fakhri Karray

ABSTRACT

Driver distraction and fatigue are considered the main cause of most car accidents today. This paper compares the performance of Random Forest and a number of other well-known classifiers for driver distraction detection and recognition problems. A non-intrusive system, which consists of hardware components for capturing the driver’s driving sessions on a car simulator, using infrared and Kinect cameras, combined with a software component for monitoring some visual behaviors that reflect a driver’s level of distraction, was used in this work. In this system, five visual cues were calculated: arm position, eye closure, eye gaze, facial expressions, and orientation. These cues were then fed into a classifier, such as AdaBoost, Hidden Markov Models, Random Forest, Support Vector Machine, Conditional Random Field, or Neural Network, in order to detect and recognize the type of distraction. The use of various cues resulted in a more robust and accurate detection and classification of distraction, than using only one. The system was tested with various sequences recorded from different users. Experimental results were very promising, and show the superiority of the Random Forest classifier compared to the other classifiers. More... »

PAGES

256-265

References to SciGraph publications

  • 2001-10. Random Forests in MACHINE LEARNING
  • Book

    TITLE

    Image Analysis and Recognition

    ISBN

    978-3-319-11757-7
    978-3-319-11758-4

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-11758-4_28

    DOI

    http://dx.doi.org/10.1007/978-3-319-11758-4_28

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022051659


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Center for Pattern Analysis and Machine Intelligence Electrical and Computer Engineering Department, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ragab", 
            "givenName": "Amira", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Center for Pattern Analysis and Machine Intelligence Electrical and Computer Engineering Department, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Craye", 
            "givenName": "Celine", 
            "id": "sg:person.012454441255.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012454441255.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Center for Pattern Analysis and Machine Intelligence Electrical and Computer Engineering Department, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kamel", 
            "givenName": "Mohamed S.", 
            "id": "sg:person.01133760566.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Center for Pattern Analysis and Machine Intelligence Electrical and Computer Engineering Department, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Karray", 
            "givenName": "Fakhri", 
            "id": "sg:person.010544641574.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010544641574.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.patcog.2007.01.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011417421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1001/jama.2015.13350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013864060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010933404324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024739340", 
              "https://doi.org/10.1023/a:1010933404324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ssci.2008.03.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053451836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.279188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061218423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tits.2003.821342", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061657294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tits.2007.895298", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061657461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1243/09596518jsce218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064456494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1243/09596518jsce218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064456494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/itsc.2007.4357803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093668607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cdc.2012.6426089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094458306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/itsc.2004.1398919", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095195241"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014", 
        "datePublishedReg": "2014-01-01", 
        "description": "Driver distraction and fatigue are considered the main cause of most car accidents today. This paper compares the performance of Random Forest and a number of other well-known classifiers for driver distraction detection and recognition problems. A non-intrusive system, which consists of hardware components for capturing the driver\u2019s driving sessions on a car simulator, using infrared and Kinect cameras, combined with a software component for monitoring some visual behaviors that reflect a driver\u2019s level of distraction, was used in this work. In this system, five visual cues were calculated: arm position, eye closure, eye gaze, facial expressions, and orientation. These cues were then fed into a classifier, such as AdaBoost, Hidden Markov Models, Random Forest, Support Vector Machine, Conditional Random Field, or Neural Network, in order to detect and recognize the type of distraction. The use of various cues resulted in a more robust and accurate detection and classification of distraction, than using only one. The system was tested with various sequences recorded from different users. Experimental results were very promising, and show the superiority of the Random Forest classifier compared to the other classifiers.", 
        "editor": [
          {
            "familyName": "Campilho", 
            "givenName": "Aur\u00e9lio", 
            "type": "Person"
          }, 
          {
            "familyName": "Kamel", 
            "givenName": "Mohamed", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-11758-4_28", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-11757-7", 
            "978-3-319-11758-4"
          ], 
          "name": "Image Analysis and Recognition", 
          "type": "Book"
        }, 
        "name": "A Visual-Based Driver Distraction Recognition and Detection Using Random Forest", 
        "pagination": "256-265", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-11758-4_28"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "690f6b306af5ef7b4f96a7458eb5e59759ba1d76c52e44ed1db24c3ffb99b59f"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022051659"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-11758-4_28", 
          "https://app.dimensions.ai/details/publication/pub.1022051659"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T23:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000256.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-11758-4_28"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11758-4_28'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11758-4_28'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11758-4_28'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11758-4_28'


     

    This table displays all metadata directly associated to this object as RDF triples.

    124 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-11758-4_28 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Na25570033d1f4c7cb89dcbff57abd53c
    4 schema:citation sg:pub.10.1023/a:1010933404324
    5 https://doi.org/10.1001/jama.2015.13350
    6 https://doi.org/10.1016/j.patcog.2007.01.018
    7 https://doi.org/10.1016/j.ssci.2008.03.006
    8 https://doi.org/10.1109/72.279188
    9 https://doi.org/10.1109/cdc.2012.6426089
    10 https://doi.org/10.1109/itsc.2004.1398919
    11 https://doi.org/10.1109/itsc.2007.4357803
    12 https://doi.org/10.1109/tits.2003.821342
    13 https://doi.org/10.1109/tits.2007.895298
    14 https://doi.org/10.1243/09596518jsce218
    15 schema:datePublished 2014
    16 schema:datePublishedReg 2014-01-01
    17 schema:description Driver distraction and fatigue are considered the main cause of most car accidents today. This paper compares the performance of Random Forest and a number of other well-known classifiers for driver distraction detection and recognition problems. A non-intrusive system, which consists of hardware components for capturing the driver’s driving sessions on a car simulator, using infrared and Kinect cameras, combined with a software component for monitoring some visual behaviors that reflect a driver’s level of distraction, was used in this work. In this system, five visual cues were calculated: arm position, eye closure, eye gaze, facial expressions, and orientation. These cues were then fed into a classifier, such as AdaBoost, Hidden Markov Models, Random Forest, Support Vector Machine, Conditional Random Field, or Neural Network, in order to detect and recognize the type of distraction. The use of various cues resulted in a more robust and accurate detection and classification of distraction, than using only one. The system was tested with various sequences recorded from different users. Experimental results were very promising, and show the superiority of the Random Forest classifier compared to the other classifiers.
    18 schema:editor N16ebf21e62e947c58d391d39a4eeb131
    19 schema:genre chapter
    20 schema:inLanguage en
    21 schema:isAccessibleForFree false
    22 schema:isPartOf N3d31b0a0387a45358d6ebecde8fc7233
    23 schema:name A Visual-Based Driver Distraction Recognition and Detection Using Random Forest
    24 schema:pagination 256-265
    25 schema:productId N1e6c9121b33a4601852dd4536df62e31
    26 N8f3ab46b87654aee84d5257565100eb8
    27 Ne3465a832743416ab170bbf2a303e155
    28 schema:publisher N8e87f0c5010b4814ba9a8edcb802aede
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022051659
    30 https://doi.org/10.1007/978-3-319-11758-4_28
    31 schema:sdDatePublished 2019-04-15T23:51
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher N5711e7fda9ff44c095a208a6f8f1dc50
    34 schema:url http://link.springer.com/10.1007/978-3-319-11758-4_28
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset chapters
    37 rdf:type schema:Chapter
    38 N16ebf21e62e947c58d391d39a4eeb131 rdf:first Nfc234ef6f0484bf4a32c8363c1b53c7e
    39 rdf:rest N478c212832354910885ca9d6cf0e3ede
    40 N1d743f9ab76e435ead1f13287de89ed4 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    41 schema:familyName Ragab
    42 schema:givenName Amira
    43 rdf:type schema:Person
    44 N1e6c9121b33a4601852dd4536df62e31 schema:name doi
    45 schema:value 10.1007/978-3-319-11758-4_28
    46 rdf:type schema:PropertyValue
    47 N3365890d4f9448a9ba9b184a437ed815 schema:familyName Kamel
    48 schema:givenName Mohamed
    49 rdf:type schema:Person
    50 N3d31b0a0387a45358d6ebecde8fc7233 schema:isbn 978-3-319-11757-7
    51 978-3-319-11758-4
    52 schema:name Image Analysis and Recognition
    53 rdf:type schema:Book
    54 N478c212832354910885ca9d6cf0e3ede rdf:first N3365890d4f9448a9ba9b184a437ed815
    55 rdf:rest rdf:nil
    56 N5711e7fda9ff44c095a208a6f8f1dc50 schema:name Springer Nature - SN SciGraph project
    57 rdf:type schema:Organization
    58 N593701f805ba4099bdb1f431878efc9a rdf:first sg:person.01133760566.26
    59 rdf:rest N88c243a130794546b77e3a8ea0276a69
    60 N88c243a130794546b77e3a8ea0276a69 rdf:first sg:person.010544641574.33
    61 rdf:rest rdf:nil
    62 N8e87f0c5010b4814ba9a8edcb802aede schema:location Cham
    63 schema:name Springer International Publishing
    64 rdf:type schema:Organisation
    65 N8f3ab46b87654aee84d5257565100eb8 schema:name readcube_id
    66 schema:value 690f6b306af5ef7b4f96a7458eb5e59759ba1d76c52e44ed1db24c3ffb99b59f
    67 rdf:type schema:PropertyValue
    68 Na25570033d1f4c7cb89dcbff57abd53c rdf:first N1d743f9ab76e435ead1f13287de89ed4
    69 rdf:rest Nc0a9444655814f1ba92c4d39f7a2e31a
    70 Nc0a9444655814f1ba92c4d39f7a2e31a rdf:first sg:person.012454441255.75
    71 rdf:rest N593701f805ba4099bdb1f431878efc9a
    72 Ne3465a832743416ab170bbf2a303e155 schema:name dimensions_id
    73 schema:value pub.1022051659
    74 rdf:type schema:PropertyValue
    75 Nfc234ef6f0484bf4a32c8363c1b53c7e schema:familyName Campilho
    76 schema:givenName Aurélio
    77 rdf:type schema:Person
    78 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Information and Computing Sciences
    80 rdf:type schema:DefinedTerm
    81 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Artificial Intelligence and Image Processing
    83 rdf:type schema:DefinedTerm
    84 sg:person.010544641574.33 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    85 schema:familyName Karray
    86 schema:givenName Fakhri
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010544641574.33
    88 rdf:type schema:Person
    89 sg:person.01133760566.26 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    90 schema:familyName Kamel
    91 schema:givenName Mohamed S.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26
    93 rdf:type schema:Person
    94 sg:person.012454441255.75 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    95 schema:familyName Craye
    96 schema:givenName Celine
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012454441255.75
    98 rdf:type schema:Person
    99 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
    100 https://doi.org/10.1023/a:1010933404324
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1001/jama.2015.13350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013864060
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1016/j.patcog.2007.01.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011417421
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/j.ssci.2008.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053451836
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1109/72.279188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218423
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1109/cdc.2012.6426089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094458306
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1109/itsc.2004.1398919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095195241
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1109/itsc.2007.4357803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093668607
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1109/tits.2003.821342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061657294
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1109/tits.2007.895298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061657461
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1243/09596518jsce218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064456494
    121 rdf:type schema:CreativeWork
    122 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
    123 schema:name Center for Pattern Analysis and Machine Intelligence Electrical and Computer Engineering Department, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
    124 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...