Image Descriptors Based on Curvature Histograms View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014-10-15

AUTHORS

Philipp Fischer , Thomas Brox

ABSTRACT

Descriptors based on orientation histograms are widely used in computer vision. The spatial pooling involved in these representations provides important invariance properties, yet it is also responsible for the loss of important details. In this paper, we suggest a way to preserve the details described by the local curvature. We propose a descriptor that comprises the direction and magnitude of curvature and naturally expands classical orientation histograms like SIFT and HOG. We demonstrate the general benefit of the expansion exemplarily for image classification, object detection, and descriptor matching. More... »

PAGES

239-249

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-11752-2_19

DOI

http://dx.doi.org/10.1007/978-3-319-11752-2_19

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046901468


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fischer", 
        "givenName": "Philipp", 
        "id": "sg:person.012106015125.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012106015125.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brox", 
        "givenName": "Thomas", 
        "id": "sg:person.012443225372.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014-10-15", 
    "datePublishedReg": "2014-10-15", 
    "description": "Descriptors based on orientation histograms are widely used in computer vision. The spatial pooling involved in these representations provides important invariance properties, yet it is also responsible for the loss of important details. In this paper, we suggest a way to preserve the details described by the local curvature. We propose a descriptor that comprises the direction and magnitude of curvature and naturally expands classical orientation histograms like SIFT and HOG. We demonstrate the general benefit of the expansion exemplarily for image classification, object detection, and descriptor matching.", 
    "editor": [
      {
        "familyName": "Jiang", 
        "givenName": "Xiaoyi", 
        "type": "Person"
      }, 
      {
        "familyName": "Hornegger", 
        "givenName": "Joachim", 
        "type": "Person"
      }, 
      {
        "familyName": "Koch", 
        "givenName": "Reinhard", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-11752-2_19", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-11751-5", 
        "978-3-319-11752-2"
      ], 
      "name": "Pattern Recognition", 
      "type": "Book"
    }, 
    "keywords": [
      "orientation histogram", 
      "computer vision", 
      "image classification", 
      "image descriptors", 
      "descriptor matching", 
      "spatial pooling", 
      "histogram", 
      "descriptors", 
      "important invariance properties", 
      "SIFT", 
      "HOG", 
      "invariance properties", 
      "important details", 
      "general benefits", 
      "matching", 
      "vision", 
      "classification", 
      "pooling", 
      "representation", 
      "detection", 
      "detail", 
      "way", 
      "benefits", 
      "curvature histogram", 
      "local curvature", 
      "direction", 
      "magnitude of curvature", 
      "loss", 
      "curvature", 
      "expansion", 
      "properties", 
      "magnitude", 
      "paper"
    ], 
    "name": "Image Descriptors Based on Curvature Histograms", 
    "pagination": "239-249", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046901468"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-11752-2_19"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-11752-2_19", 
      "https://app.dimensions.ai/details/publication/pub.1046901468"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_332.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-11752-2_19"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11752-2_19'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11752-2_19'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11752-2_19'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11752-2_19'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      22 PREDICATES      57 URIs      50 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-11752-2_19 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4470a642bf6d48868583d1b2e8448aa7
4 schema:datePublished 2014-10-15
5 schema:datePublishedReg 2014-10-15
6 schema:description Descriptors based on orientation histograms are widely used in computer vision. The spatial pooling involved in these representations provides important invariance properties, yet it is also responsible for the loss of important details. In this paper, we suggest a way to preserve the details described by the local curvature. We propose a descriptor that comprises the direction and magnitude of curvature and naturally expands classical orientation histograms like SIFT and HOG. We demonstrate the general benefit of the expansion exemplarily for image classification, object detection, and descriptor matching.
7 schema:editor Ne243a4cd51ab498f9cfc2b1a5c9d75e9
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Ne0b81a23339c49a8ab3d4111664b36e5
11 schema:keywords HOG
12 SIFT
13 benefits
14 classification
15 computer vision
16 curvature
17 curvature histogram
18 descriptor matching
19 descriptors
20 detail
21 detection
22 direction
23 expansion
24 general benefits
25 histogram
26 image classification
27 image descriptors
28 important details
29 important invariance properties
30 invariance properties
31 local curvature
32 loss
33 magnitude
34 magnitude of curvature
35 matching
36 orientation histogram
37 paper
38 pooling
39 properties
40 representation
41 spatial pooling
42 vision
43 way
44 schema:name Image Descriptors Based on Curvature Histograms
45 schema:pagination 239-249
46 schema:productId N19e727e3e64b424aa17a87b91ee891d3
47 Nfad3d84b69044a0182b2ba701b7bdac9
48 schema:publisher Nf5238db4f7df4ceaba28c735fd8420f2
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046901468
50 https://doi.org/10.1007/978-3-319-11752-2_19
51 schema:sdDatePublished 2022-10-01T06:57
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nbd286636086d485491591f9e41b4bcee
54 schema:url https://doi.org/10.1007/978-3-319-11752-2_19
55 sgo:license sg:explorer/license/
56 sgo:sdDataset chapters
57 rdf:type schema:Chapter
58 N0e82288053f24e03828c46627c08a016 rdf:first sg:person.012443225372.65
59 rdf:rest rdf:nil
60 N19e727e3e64b424aa17a87b91ee891d3 schema:name dimensions_id
61 schema:value pub.1046901468
62 rdf:type schema:PropertyValue
63 N24b045af1d7948d4b4e233b65d35795f schema:familyName Hornegger
64 schema:givenName Joachim
65 rdf:type schema:Person
66 N4470a642bf6d48868583d1b2e8448aa7 rdf:first sg:person.012106015125.15
67 rdf:rest N0e82288053f24e03828c46627c08a016
68 N613af3050a7944e19448678a1d529510 rdf:first N24b045af1d7948d4b4e233b65d35795f
69 rdf:rest Nbbb7046d0b0d443a8de7af634da81509
70 N615a88bb3b2d47b1b14f9ed25c9ae6ec schema:familyName Jiang
71 schema:givenName Xiaoyi
72 rdf:type schema:Person
73 Nbbb7046d0b0d443a8de7af634da81509 rdf:first Nebdada0b091346f18fab97d1dc093ec7
74 rdf:rest rdf:nil
75 Nbd286636086d485491591f9e41b4bcee schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Ne0b81a23339c49a8ab3d4111664b36e5 schema:isbn 978-3-319-11751-5
78 978-3-319-11752-2
79 schema:name Pattern Recognition
80 rdf:type schema:Book
81 Ne243a4cd51ab498f9cfc2b1a5c9d75e9 rdf:first N615a88bb3b2d47b1b14f9ed25c9ae6ec
82 rdf:rest N613af3050a7944e19448678a1d529510
83 Nebdada0b091346f18fab97d1dc093ec7 schema:familyName Koch
84 schema:givenName Reinhard
85 rdf:type schema:Person
86 Nf5238db4f7df4ceaba28c735fd8420f2 schema:name Springer Nature
87 rdf:type schema:Organisation
88 Nfad3d84b69044a0182b2ba701b7bdac9 schema:name doi
89 schema:value 10.1007/978-3-319-11752-2_19
90 rdf:type schema:PropertyValue
91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
92 schema:name Information and Computing Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
95 schema:name Artificial Intelligence and Image Processing
96 rdf:type schema:DefinedTerm
97 sg:person.012106015125.15 schema:affiliation grid-institutes:grid.5963.9
98 schema:familyName Fischer
99 schema:givenName Philipp
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012106015125.15
101 rdf:type schema:Person
102 sg:person.012443225372.65 schema:affiliation grid-institutes:grid.5963.9
103 schema:familyName Brox
104 schema:givenName Thomas
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65
106 rdf:type schema:Person
107 grid-institutes:grid.5963.9 schema:alternateName Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany
108 schema:name Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...