Exploiting Perceptual Similarity: Privacy-Preserving Cooperative Query Personalization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Christoph Lofi , Christian Nieke

ABSTRACT

In this paper, we introduce privacy-preserving query personalization for experience items like movies, music, games or books. While these items are rather common, describing them with semantically meaningful attribute values is challenging, thus hindering traditional database query personalization. This often leads to the use of recommender systems, which, however, have several drawbacks as for example high barriers for new users joining the system, the inability to process dynamic queries, and severe privacy concerns due to requiring extensive long-term user profiles. We propose an alternative approach, representing experience items in a perceptual space using high-dimensional and semantically rich features. In order to query this space, we provide query-by-example personalization relying on the perceived similarity between items, and learn a user’s current preferences with respect to the query on the fly. Furthermore, for query execution, our approach addresses privacy issues of recommender systems as we do not require user profiles for queries, do not leak any personal information during interaction, and allow users to stay anonymous while querying. In this paper, we provide the foundations of such a system and then extensively discuss and evaluate the performance of our approach under different assumptions. Also, suitable optimizations and modifications to ensure scalability on current hardware are presented. More... »

PAGES

340-356

Book

TITLE

Web Information Systems Engineering – WISE 2014

ISBN

978-3-319-11748-5
978-3-319-11749-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-11749-2_26

DOI

http://dx.doi.org/10.1007/978-3-319-11749-2_26

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025121787


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technische Universit\u00e4t Braunschweig, M\u00fchlenpfordtstr. 23, 38114, Braunschweig, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6738.a", 
          "name": [
            "Technische Universit\u00e4t Braunschweig, M\u00fchlenpfordtstr. 23, 38114, Braunschweig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lofi", 
        "givenName": "Christoph", 
        "id": "sg:person.011355173745.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355173745.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technische Universit\u00e4t Braunschweig, M\u00fchlenpfordtstr. 23, 38114, Braunschweig, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6738.a", 
          "name": [
            "Technische Universit\u00e4t Braunschweig, M\u00fchlenpfordtstr. 23, 38114, Braunschweig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nieke", 
        "givenName": "Christian", 
        "id": "sg:person.013005404255.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013005404255.10"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "In this paper, we introduce privacy-preserving query personalization for experience items like movies, music, games or books. While these items are rather common, describing them with semantically meaningful attribute values is challenging, thus hindering traditional database query personalization. This often leads to the use of recommender systems, which, however, have several drawbacks as for example high barriers for new users joining the system, the inability to process dynamic queries, and severe privacy concerns due to requiring extensive long-term user profiles. We propose an alternative approach, representing experience items in a perceptual space using high-dimensional and semantically rich features. In order to query this space, we provide query-by-example personalization relying on the perceived similarity between items, and learn a user\u2019s current preferences with respect to the query on the fly. Furthermore, for query execution, our approach addresses privacy issues of recommender systems as we do not require user profiles for queries, do not leak any personal information during interaction, and allow users to stay anonymous while querying. In this paper, we provide the foundations of such a system and then extensively discuss and evaluate the performance of our approach under different assumptions. Also, suitable optimizations and modifications to ensure scalability on current hardware are presented.", 
    "editor": [
      {
        "familyName": "Benatallah", 
        "givenName": "Boualem", 
        "type": "Person"
      }, 
      {
        "familyName": "Bestavros", 
        "givenName": "Azer", 
        "type": "Person"
      }, 
      {
        "familyName": "Manolopoulos", 
        "givenName": "Yannis", 
        "type": "Person"
      }, 
      {
        "familyName": "Vakali", 
        "givenName": "Athena", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhang", 
        "givenName": "Yanchun", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-11749-2_26", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-11748-5", 
        "978-3-319-11749-2"
      ], 
      "name": "Web Information Systems Engineering \u2013 WISE 2014", 
      "type": "Book"
    }, 
    "keywords": [
      "query personalization", 
      "recommender systems", 
      "user profiles", 
      "long-term user profiles", 
      "severe privacy concerns", 
      "user's current preferences", 
      "dynamic queries", 
      "query execution", 
      "privacy issues", 
      "privacy concerns", 
      "current hardware", 
      "personal information", 
      "queries", 
      "attribute values", 
      "rich features", 
      "new users", 
      "personalization", 
      "current preferences", 
      "users", 
      "experience items", 
      "suitable optimization", 
      "scalability", 
      "hardware", 
      "execution", 
      "system", 
      "perceptual space", 
      "game", 
      "space", 
      "alternative approach", 
      "movies", 
      "items", 
      "information", 
      "drawbacks", 
      "optimization", 
      "performance", 
      "different assumptions", 
      "features", 
      "issues", 
      "music", 
      "foundation", 
      "order", 
      "similarity", 
      "flies", 
      "preferences", 
      "use", 
      "assumption", 
      "concern", 
      "respect", 
      "interaction", 
      "book", 
      "modification", 
      "inability", 
      "values", 
      "high barrier", 
      "profile", 
      "barriers", 
      "paper", 
      "approach"
    ], 
    "name": "Exploiting Perceptual Similarity: Privacy-Preserving Cooperative Query Personalization", 
    "pagination": "340-356", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025121787"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-11749-2_26"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-11749-2_26", 
      "https://app.dimensions.ai/details/publication/pub.1025121787"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_453.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-11749-2_26"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11749-2_26'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11749-2_26'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11749-2_26'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11749-2_26'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      23 PREDICATES      85 URIs      77 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-11749-2_26 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 anzsrc-for:0806
4 schema:author Nf5715bb35b5544138b80d1d5bb5e6780
5 schema:datePublished 2014
6 schema:datePublishedReg 2014-01-01
7 schema:description In this paper, we introduce privacy-preserving query personalization for experience items like movies, music, games or books. While these items are rather common, describing them with semantically meaningful attribute values is challenging, thus hindering traditional database query personalization. This often leads to the use of recommender systems, which, however, have several drawbacks as for example high barriers for new users joining the system, the inability to process dynamic queries, and severe privacy concerns due to requiring extensive long-term user profiles. We propose an alternative approach, representing experience items in a perceptual space using high-dimensional and semantically rich features. In order to query this space, we provide query-by-example personalization relying on the perceived similarity between items, and learn a user’s current preferences with respect to the query on the fly. Furthermore, for query execution, our approach addresses privacy issues of recommender systems as we do not require user profiles for queries, do not leak any personal information during interaction, and allow users to stay anonymous while querying. In this paper, we provide the foundations of such a system and then extensively discuss and evaluate the performance of our approach under different assumptions. Also, suitable optimizations and modifications to ensure scalability on current hardware are presented.
8 schema:editor N1f8307e2161a4398bbebf996b20fe1bb
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Nb5e7f428a7ae4b778a0205c10487e9c4
13 schema:keywords alternative approach
14 approach
15 assumption
16 attribute values
17 barriers
18 book
19 concern
20 current hardware
21 current preferences
22 different assumptions
23 drawbacks
24 dynamic queries
25 execution
26 experience items
27 features
28 flies
29 foundation
30 game
31 hardware
32 high barrier
33 inability
34 information
35 interaction
36 issues
37 items
38 long-term user profiles
39 modification
40 movies
41 music
42 new users
43 optimization
44 order
45 paper
46 perceptual space
47 performance
48 personal information
49 personalization
50 preferences
51 privacy concerns
52 privacy issues
53 profile
54 queries
55 query execution
56 query personalization
57 recommender systems
58 respect
59 rich features
60 scalability
61 severe privacy concerns
62 similarity
63 space
64 suitable optimization
65 system
66 use
67 user profiles
68 user's current preferences
69 users
70 values
71 schema:name Exploiting Perceptual Similarity: Privacy-Preserving Cooperative Query Personalization
72 schema:pagination 340-356
73 schema:productId N59cbc1b1c8c14e4ca91cb82f13fed28e
74 Ncf59b720fe41467a87d447f3ef52eec9
75 schema:publisher Nf30422fc30554026ad6545134fee26da
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025121787
77 https://doi.org/10.1007/978-3-319-11749-2_26
78 schema:sdDatePublished 2022-06-01T22:35
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N8e1ae5c8fec944eda99ec69d0ef93a58
81 schema:url https://doi.org/10.1007/978-3-319-11749-2_26
82 sgo:license sg:explorer/license/
83 sgo:sdDataset chapters
84 rdf:type schema:Chapter
85 N10c01d9ab4c443ff845171d7cf33dc9b rdf:first sg:person.013005404255.10
86 rdf:rest rdf:nil
87 N1f8307e2161a4398bbebf996b20fe1bb rdf:first N7b783f4bf6cb4ecdb2877c148f10e419
88 rdf:rest N6ebf8361dad5455f8ba92ca4fd99a832
89 N21a7ad612eab42ae9540c56824b898c9 schema:familyName Bestavros
90 schema:givenName Azer
91 rdf:type schema:Person
92 N2de84e5c5e7a4971b89903174f235931 rdf:first N4240908dfb8d41b3a6008e3a27b00f89
93 rdf:rest N79b68f754dde467d9ab8029a4014ce23
94 N4240908dfb8d41b3a6008e3a27b00f89 schema:familyName Manolopoulos
95 schema:givenName Yannis
96 rdf:type schema:Person
97 N59cbc1b1c8c14e4ca91cb82f13fed28e schema:name doi
98 schema:value 10.1007/978-3-319-11749-2_26
99 rdf:type schema:PropertyValue
100 N60caf4750cd24731a8527e5850b77130 schema:familyName Zhang
101 schema:givenName Yanchun
102 rdf:type schema:Person
103 N6ebf8361dad5455f8ba92ca4fd99a832 rdf:first N21a7ad612eab42ae9540c56824b898c9
104 rdf:rest N2de84e5c5e7a4971b89903174f235931
105 N79b68f754dde467d9ab8029a4014ce23 rdf:first N8aecc30ad0a1443eb1b90765896ccac7
106 rdf:rest Nb8b0b7f4c65148b2883573008d929e33
107 N7b783f4bf6cb4ecdb2877c148f10e419 schema:familyName Benatallah
108 schema:givenName Boualem
109 rdf:type schema:Person
110 N8aecc30ad0a1443eb1b90765896ccac7 schema:familyName Vakali
111 schema:givenName Athena
112 rdf:type schema:Person
113 N8e1ae5c8fec944eda99ec69d0ef93a58 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Nb5e7f428a7ae4b778a0205c10487e9c4 schema:isbn 978-3-319-11748-5
116 978-3-319-11749-2
117 schema:name Web Information Systems Engineering – WISE 2014
118 rdf:type schema:Book
119 Nb8b0b7f4c65148b2883573008d929e33 rdf:first N60caf4750cd24731a8527e5850b77130
120 rdf:rest rdf:nil
121 Ncf59b720fe41467a87d447f3ef52eec9 schema:name dimensions_id
122 schema:value pub.1025121787
123 rdf:type schema:PropertyValue
124 Nf30422fc30554026ad6545134fee26da schema:name Springer Nature
125 rdf:type schema:Organisation
126 Nf5715bb35b5544138b80d1d5bb5e6780 rdf:first sg:person.011355173745.44
127 rdf:rest N10c01d9ab4c443ff845171d7cf33dc9b
128 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
129 schema:name Information and Computing Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
132 schema:name Data Format
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
135 schema:name Information Systems
136 rdf:type schema:DefinedTerm
137 sg:person.011355173745.44 schema:affiliation grid-institutes:grid.6738.a
138 schema:familyName Lofi
139 schema:givenName Christoph
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355173745.44
141 rdf:type schema:Person
142 sg:person.013005404255.10 schema:affiliation grid-institutes:grid.6738.a
143 schema:familyName Nieke
144 schema:givenName Christian
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013005404255.10
146 rdf:type schema:Person
147 grid-institutes:grid.6738.a schema:alternateName Technische Universität Braunschweig, Mühlenpfordtstr. 23, 38114, Braunschweig, Germany
148 schema:name Technische Universität Braunschweig, Mühlenpfordtstr. 23, 38114, Braunschweig, Germany
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...