Ontology type: schema:Chapter
2014
AUTHORSChristoph Lofi , Christian Nieke
ABSTRACTIn this paper, we introduce privacy-preserving query personalization for experience items like movies, music, games or books. While these items are rather common, describing them with semantically meaningful attribute values is challenging, thus hindering traditional database query personalization. This often leads to the use of recommender systems, which, however, have several drawbacks as for example high barriers for new users joining the system, the inability to process dynamic queries, and severe privacy concerns due to requiring extensive long-term user profiles. We propose an alternative approach, representing experience items in a perceptual space using high-dimensional and semantically rich features. In order to query this space, we provide query-by-example personalization relying on the perceived similarity between items, and learn a user’s current preferences with respect to the query on the fly. Furthermore, for query execution, our approach addresses privacy issues of recommender systems as we do not require user profiles for queries, do not leak any personal information during interaction, and allow users to stay anonymous while querying. In this paper, we provide the foundations of such a system and then extensively discuss and evaluate the performance of our approach under different assumptions. Also, suitable optimizations and modifications to ensure scalability on current hardware are presented. More... »
PAGES340-356
Web Information Systems Engineering – WISE 2014
ISBN
978-3-319-11748-5
978-3-319-11749-2
http://scigraph.springernature.com/pub.10.1007/978-3-319-11749-2_26
DOIhttp://dx.doi.org/10.1007/978-3-319-11749-2_26
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1025121787
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Data Format",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information Systems",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Technische Universit\u00e4t Braunschweig, M\u00fchlenpfordtstr. 23, 38114, Braunschweig, Germany",
"id": "http://www.grid.ac/institutes/grid.6738.a",
"name": [
"Technische Universit\u00e4t Braunschweig, M\u00fchlenpfordtstr. 23, 38114, Braunschweig, Germany"
],
"type": "Organization"
},
"familyName": "Lofi",
"givenName": "Christoph",
"id": "sg:person.011355173745.44",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355173745.44"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Technische Universit\u00e4t Braunschweig, M\u00fchlenpfordtstr. 23, 38114, Braunschweig, Germany",
"id": "http://www.grid.ac/institutes/grid.6738.a",
"name": [
"Technische Universit\u00e4t Braunschweig, M\u00fchlenpfordtstr. 23, 38114, Braunschweig, Germany"
],
"type": "Organization"
},
"familyName": "Nieke",
"givenName": "Christian",
"id": "sg:person.013005404255.10",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013005404255.10"
],
"type": "Person"
}
],
"datePublished": "2014",
"datePublishedReg": "2014-01-01",
"description": "In this paper, we introduce privacy-preserving query personalization for experience items like movies, music, games or books. While these items are rather common, describing them with semantically meaningful attribute values is challenging, thus hindering traditional database query personalization. This often leads to the use of recommender systems, which, however, have several drawbacks as for example high barriers for new users joining the system, the inability to process dynamic queries, and severe privacy concerns due to requiring extensive long-term user profiles. We propose an alternative approach, representing experience items in a perceptual space using high-dimensional and semantically rich features. In order to query this space, we provide query-by-example personalization relying on the perceived similarity between items, and learn a user\u2019s current preferences with respect to the query on the fly. Furthermore, for query execution, our approach addresses privacy issues of recommender systems as we do not require user profiles for queries, do not leak any personal information during interaction, and allow users to stay anonymous while querying. In this paper, we provide the foundations of such a system and then extensively discuss and evaluate the performance of our approach under different assumptions. Also, suitable optimizations and modifications to ensure scalability on current hardware are presented.",
"editor": [
{
"familyName": "Benatallah",
"givenName": "Boualem",
"type": "Person"
},
{
"familyName": "Bestavros",
"givenName": "Azer",
"type": "Person"
},
{
"familyName": "Manolopoulos",
"givenName": "Yannis",
"type": "Person"
},
{
"familyName": "Vakali",
"givenName": "Athena",
"type": "Person"
},
{
"familyName": "Zhang",
"givenName": "Yanchun",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-11749-2_26",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-11748-5",
"978-3-319-11749-2"
],
"name": "Web Information Systems Engineering \u2013 WISE 2014",
"type": "Book"
},
"keywords": [
"query personalization",
"recommender systems",
"user profiles",
"long-term user profiles",
"severe privacy concerns",
"user's current preferences",
"dynamic queries",
"query execution",
"privacy issues",
"privacy concerns",
"current hardware",
"personal information",
"queries",
"attribute values",
"rich features",
"new users",
"personalization",
"current preferences",
"users",
"experience items",
"suitable optimization",
"scalability",
"hardware",
"execution",
"system",
"perceptual space",
"game",
"space",
"alternative approach",
"movies",
"items",
"information",
"drawbacks",
"optimization",
"performance",
"different assumptions",
"features",
"issues",
"music",
"foundation",
"order",
"similarity",
"flies",
"preferences",
"use",
"assumption",
"concern",
"respect",
"interaction",
"book",
"modification",
"inability",
"values",
"high barrier",
"profile",
"barriers",
"paper",
"approach"
],
"name": "Exploiting Perceptual Similarity: Privacy-Preserving Cooperative Query Personalization",
"pagination": "340-356",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1025121787"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-11749-2_26"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-11749-2_26",
"https://app.dimensions.ai/details/publication/pub.1025121787"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:35",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_453.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-11749-2_26"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11749-2_26'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11749-2_26'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11749-2_26'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11749-2_26'
This table displays all metadata directly associated to this object as RDF triples.
149 TRIPLES
23 PREDICATES
85 URIs
77 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-11749-2_26 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0804 |
3 | ″ | ″ | anzsrc-for:0806 |
4 | ″ | schema:author | Nf5715bb35b5544138b80d1d5bb5e6780 |
5 | ″ | schema:datePublished | 2014 |
6 | ″ | schema:datePublishedReg | 2014-01-01 |
7 | ″ | schema:description | In this paper, we introduce privacy-preserving query personalization for experience items like movies, music, games or books. While these items are rather common, describing them with semantically meaningful attribute values is challenging, thus hindering traditional database query personalization. This often leads to the use of recommender systems, which, however, have several drawbacks as for example high barriers for new users joining the system, the inability to process dynamic queries, and severe privacy concerns due to requiring extensive long-term user profiles. We propose an alternative approach, representing experience items in a perceptual space using high-dimensional and semantically rich features. In order to query this space, we provide query-by-example personalization relying on the perceived similarity between items, and learn a user’s current preferences with respect to the query on the fly. Furthermore, for query execution, our approach addresses privacy issues of recommender systems as we do not require user profiles for queries, do not leak any personal information during interaction, and allow users to stay anonymous while querying. In this paper, we provide the foundations of such a system and then extensively discuss and evaluate the performance of our approach under different assumptions. Also, suitable optimizations and modifications to ensure scalability on current hardware are presented. |
8 | ″ | schema:editor | N1f8307e2161a4398bbebf996b20fe1bb |
9 | ″ | schema:genre | chapter |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | Nb5e7f428a7ae4b778a0205c10487e9c4 |
13 | ″ | schema:keywords | alternative approach |
14 | ″ | ″ | approach |
15 | ″ | ″ | assumption |
16 | ″ | ″ | attribute values |
17 | ″ | ″ | barriers |
18 | ″ | ″ | book |
19 | ″ | ″ | concern |
20 | ″ | ″ | current hardware |
21 | ″ | ″ | current preferences |
22 | ″ | ″ | different assumptions |
23 | ″ | ″ | drawbacks |
24 | ″ | ″ | dynamic queries |
25 | ″ | ″ | execution |
26 | ″ | ″ | experience items |
27 | ″ | ″ | features |
28 | ″ | ″ | flies |
29 | ″ | ″ | foundation |
30 | ″ | ″ | game |
31 | ″ | ″ | hardware |
32 | ″ | ″ | high barrier |
33 | ″ | ″ | inability |
34 | ″ | ″ | information |
35 | ″ | ″ | interaction |
36 | ″ | ″ | issues |
37 | ″ | ″ | items |
38 | ″ | ″ | long-term user profiles |
39 | ″ | ″ | modification |
40 | ″ | ″ | movies |
41 | ″ | ″ | music |
42 | ″ | ″ | new users |
43 | ″ | ″ | optimization |
44 | ″ | ″ | order |
45 | ″ | ″ | paper |
46 | ″ | ″ | perceptual space |
47 | ″ | ″ | performance |
48 | ″ | ″ | personal information |
49 | ″ | ″ | personalization |
50 | ″ | ″ | preferences |
51 | ″ | ″ | privacy concerns |
52 | ″ | ″ | privacy issues |
53 | ″ | ″ | profile |
54 | ″ | ″ | queries |
55 | ″ | ″ | query execution |
56 | ″ | ″ | query personalization |
57 | ″ | ″ | recommender systems |
58 | ″ | ″ | respect |
59 | ″ | ″ | rich features |
60 | ″ | ″ | scalability |
61 | ″ | ″ | severe privacy concerns |
62 | ″ | ″ | similarity |
63 | ″ | ″ | space |
64 | ″ | ″ | suitable optimization |
65 | ″ | ″ | system |
66 | ″ | ″ | use |
67 | ″ | ″ | user profiles |
68 | ″ | ″ | user's current preferences |
69 | ″ | ″ | users |
70 | ″ | ″ | values |
71 | ″ | schema:name | Exploiting Perceptual Similarity: Privacy-Preserving Cooperative Query Personalization |
72 | ″ | schema:pagination | 340-356 |
73 | ″ | schema:productId | N59cbc1b1c8c14e4ca91cb82f13fed28e |
74 | ″ | ″ | Ncf59b720fe41467a87d447f3ef52eec9 |
75 | ″ | schema:publisher | Nf30422fc30554026ad6545134fee26da |
76 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1025121787 |
77 | ″ | ″ | https://doi.org/10.1007/978-3-319-11749-2_26 |
78 | ″ | schema:sdDatePublished | 2022-06-01T22:35 |
79 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
80 | ″ | schema:sdPublisher | N8e1ae5c8fec944eda99ec69d0ef93a58 |
81 | ″ | schema:url | https://doi.org/10.1007/978-3-319-11749-2_26 |
82 | ″ | sgo:license | sg:explorer/license/ |
83 | ″ | sgo:sdDataset | chapters |
84 | ″ | rdf:type | schema:Chapter |
85 | N10c01d9ab4c443ff845171d7cf33dc9b | rdf:first | sg:person.013005404255.10 |
86 | ″ | rdf:rest | rdf:nil |
87 | N1f8307e2161a4398bbebf996b20fe1bb | rdf:first | N7b783f4bf6cb4ecdb2877c148f10e419 |
88 | ″ | rdf:rest | N6ebf8361dad5455f8ba92ca4fd99a832 |
89 | N21a7ad612eab42ae9540c56824b898c9 | schema:familyName | Bestavros |
90 | ″ | schema:givenName | Azer |
91 | ″ | rdf:type | schema:Person |
92 | N2de84e5c5e7a4971b89903174f235931 | rdf:first | N4240908dfb8d41b3a6008e3a27b00f89 |
93 | ″ | rdf:rest | N79b68f754dde467d9ab8029a4014ce23 |
94 | N4240908dfb8d41b3a6008e3a27b00f89 | schema:familyName | Manolopoulos |
95 | ″ | schema:givenName | Yannis |
96 | ″ | rdf:type | schema:Person |
97 | N59cbc1b1c8c14e4ca91cb82f13fed28e | schema:name | doi |
98 | ″ | schema:value | 10.1007/978-3-319-11749-2_26 |
99 | ″ | rdf:type | schema:PropertyValue |
100 | N60caf4750cd24731a8527e5850b77130 | schema:familyName | Zhang |
101 | ″ | schema:givenName | Yanchun |
102 | ″ | rdf:type | schema:Person |
103 | N6ebf8361dad5455f8ba92ca4fd99a832 | rdf:first | N21a7ad612eab42ae9540c56824b898c9 |
104 | ″ | rdf:rest | N2de84e5c5e7a4971b89903174f235931 |
105 | N79b68f754dde467d9ab8029a4014ce23 | rdf:first | N8aecc30ad0a1443eb1b90765896ccac7 |
106 | ″ | rdf:rest | Nb8b0b7f4c65148b2883573008d929e33 |
107 | N7b783f4bf6cb4ecdb2877c148f10e419 | schema:familyName | Benatallah |
108 | ″ | schema:givenName | Boualem |
109 | ″ | rdf:type | schema:Person |
110 | N8aecc30ad0a1443eb1b90765896ccac7 | schema:familyName | Vakali |
111 | ″ | schema:givenName | Athena |
112 | ″ | rdf:type | schema:Person |
113 | N8e1ae5c8fec944eda99ec69d0ef93a58 | schema:name | Springer Nature - SN SciGraph project |
114 | ″ | rdf:type | schema:Organization |
115 | Nb5e7f428a7ae4b778a0205c10487e9c4 | schema:isbn | 978-3-319-11748-5 |
116 | ″ | ″ | 978-3-319-11749-2 |
117 | ″ | schema:name | Web Information Systems Engineering – WISE 2014 |
118 | ″ | rdf:type | schema:Book |
119 | Nb8b0b7f4c65148b2883573008d929e33 | rdf:first | N60caf4750cd24731a8527e5850b77130 |
120 | ″ | rdf:rest | rdf:nil |
121 | Ncf59b720fe41467a87d447f3ef52eec9 | schema:name | dimensions_id |
122 | ″ | schema:value | pub.1025121787 |
123 | ″ | rdf:type | schema:PropertyValue |
124 | Nf30422fc30554026ad6545134fee26da | schema:name | Springer Nature |
125 | ″ | rdf:type | schema:Organisation |
126 | Nf5715bb35b5544138b80d1d5bb5e6780 | rdf:first | sg:person.011355173745.44 |
127 | ″ | rdf:rest | N10c01d9ab4c443ff845171d7cf33dc9b |
128 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
129 | ″ | schema:name | Information and Computing Sciences |
130 | ″ | rdf:type | schema:DefinedTerm |
131 | anzsrc-for:0804 | schema:inDefinedTermSet | anzsrc-for: |
132 | ″ | schema:name | Data Format |
133 | ″ | rdf:type | schema:DefinedTerm |
134 | anzsrc-for:0806 | schema:inDefinedTermSet | anzsrc-for: |
135 | ″ | schema:name | Information Systems |
136 | ″ | rdf:type | schema:DefinedTerm |
137 | sg:person.011355173745.44 | schema:affiliation | grid-institutes:grid.6738.a |
138 | ″ | schema:familyName | Lofi |
139 | ″ | schema:givenName | Christoph |
140 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355173745.44 |
141 | ″ | rdf:type | schema:Person |
142 | sg:person.013005404255.10 | schema:affiliation | grid-institutes:grid.6738.a |
143 | ″ | schema:familyName | Nieke |
144 | ″ | schema:givenName | Christian |
145 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013005404255.10 |
146 | ″ | rdf:type | schema:Person |
147 | grid-institutes:grid.6738.a | schema:alternateName | Technische Universität Braunschweig, Mühlenpfordtstr. 23, 38114, Braunschweig, Germany |
148 | ″ | schema:name | Technische Universität Braunschweig, Mühlenpfordtstr. 23, 38114, Braunschweig, Germany |
149 | ″ | rdf:type | schema:Organization |