Multi-objective Evolutionary Algorithms in Real-World Applications: Some Recent Results and Current Challenges View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Carlos A. Coello Coello

ABSTRACT

This chapter provides a short overview of the most significant research work that has been conducted regarding the solution of computationally expensive multi-objective optimization problems. The approaches that are briefly discussed include problem approximation, function approximation (i.e., surrogates) and evolutionary approximation (i.e., clustering and fitness inheritance). Additionally, the use of alternative approaches such as cultural algorithms, small population sizes and hybrids that use a few solutions (generated with optimizers that sacrifice diversity for the sake of a faster convergence) to reconstruct the Pareto front with powerful local search engines are also briefly discussed. In the final part of the chapter, some topics that (from the author’s perspective) deserve more research, are provided. More... »

PAGES

3-18

References to SciGraph publications

  • 2010. Micro-MOPSO: A Multi-Objective Particle Swarm Optimizer That Uses a Very Small Population Size in MULTI-OBJECTIVE SWARM INTELLIGENT SYSTEMS
  • 2005. High-Fidelity Multidisciplinary Design Optimization of Wing Shape for Regional Jet Aircraft in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2013. On Gradient-Based Local Search to Hybridize Multi-objective Evolutionary Algorithms in EVOLVE- A BRIDGE BETWEEN PROBABILITY, SET ORIENTED NUMERICS AND EVOLUTIONARY COMPUTATION
  • 1997. A cultural algorithm framework to evolve multiagent cooperation with evolutionary programming in EVOLUTIONARY PROGRAMMING VI
  • 2005. Scalable Test Problems for Evolutionary Multiobjective Optimization in EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION
  • 2010. Dominance-Based Pareto-Surrogate for Multi-Objective Optimization in SIMULATED EVOLUTION AND LEARNING
  • 2003. The Micro Genetic Algorithm 2: Towards Online Adaptation in Evolutionary Multiobjective Optimization in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2005-01. A comprehensive survey of fitness approximation in evolutionary computation in SOFT COMPUTING
  • 2001. A Micro-Genetic Algorithm for Multiobjective Optimization in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • 2006. A New Proposal for Multiobjective Optimization Using Particle Swarm Optimization and Rough Sets Theory in PARALLEL PROBLEM SOLVING FROM NATURE - PPSN IX
  • 2010. GPGPU-Compatible Archive Based Stochastic Ranking Evolutionary Algorithm (G-ASREA) for Multi-Objective Optimization in PARALLEL PROBLEM SOLVING FROM NATURE, PPSN XI
  • 2008. A Proposal to Hybridize Multi-Objective Evolutionary Algorithms with Non-gradient Mathematical Programming Techniques in PARALLEL PROBLEM SOLVING FROM NATURE – PPSN X
  • 1982-10. Rough sets in INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING
  • 2011-04. DEMCMC-GPU: An Efficient Multi-Objective Optimization Method with GPU Acceleration on the Fermi Architecture in NEW GENERATION COMPUTING
  • 2010. A Review of Techniques for Handling Expensive Functions in Evolutionary Multi-Objective Optimization in COMPUTATIONAL INTELLIGENCE IN EXPENSIVE OPTIMIZATION PROBLEMS
  • 2010. Multilevel Optimization Algorithms Based on Metamodel- and Fitness Inheritance-Assisted Evolutionary Algorithms in COMPUTATIONAL INTELLIGENCE IN EXPENSIVE OPTIMIZATION PROBLEMS
  • 2008. Meta-Modeling in Multiobjective Optimization in MULTIOBJECTIVE OPTIMIZATION
  • 2008. Knowledge Incorporation in Multi-objective Evolutionary Algorithms in MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS FOR KNOWLEDGE DISCOVERY FROM DATABASES
  • 2003. Is Fitness Inheritance Useful for Real-World Applications? in EVOLUTIONARY MULTI-CRITERION OPTIMIZATION
  • Book

    TITLE

    Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences

    ISBN

    978-3-319-11540-5
    978-3-319-11541-2

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-11541-2_1

    DOI

    http://dx.doi.org/10.1007/978-3-319-11541-2_1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045730276


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Instituto Polit\u00e9cnico Nacional", 
              "id": "https://www.grid.ac/institutes/grid.418275.d", 
              "name": [
                "CINVESTAV-IPN (Evolutionary Computation Group), 07360\u00a0Mexico, D.F., Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Coello", 
            "givenName": "Carlos A. Coello", 
            "id": "sg:person.012160505340.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160505340.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.compfluid.2007.07.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002510573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-32726-1_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003654772", 
              "https://doi.org/10.1007/978-3-642-32726-1_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-77467-9_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004616688", 
              "https://doi.org/10.1007/978-3-540-77467-9_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36970-8_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005119556", 
              "https://doi.org/10.1007/3-540-36970-8_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2514/6.2004-4326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005979130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-05165-4_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007340956", 
              "https://doi.org/10.1007/978-3-642-05165-4_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cor.2009.02.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007550486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engappai.2012.09.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007672706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11844297_49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012530304", 
              "https://doi.org/10.1007/11844297_49"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11844297_49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012530304", 
              "https://doi.org/10.1007/11844297_49"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2514/6.2006-7003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012976185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0014822", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013020372", 
              "https://doi.org/10.1007/bfb0014822"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/106365600568202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014057085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2006.08.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014117674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.advengsoft.2011.04.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018189037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01001956", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020579132", 
              "https://doi.org/10.1007/bf01001956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2514/6.2007-1169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022051492"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/315891.316014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022764796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-10701-6_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022976936", 
              "https://doi.org/10.1007/978-3-642-10701-6_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-10701-6_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022976936", 
              "https://doi.org/10.1007/978-3-642-10701-6_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/106365600568167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022987704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-31880-4_43", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023517011", 
              "https://doi.org/10.1007/978-3-540-31880-4_43"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-31880-4_43", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023517011", 
              "https://doi.org/10.1007/978-3-540-31880-4_43"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2514/6.2006-1475", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023825565"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00500-003-0328-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025730957", 
              "https://doi.org/10.1007/s00500-003-0328-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/331499.331504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026347712"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-10701-6_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026629901", 
              "https://doi.org/10.1007/978-3-642-10701-6_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-10701-6_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026629901", 
              "https://doi.org/10.1007/978-3-642-10701-6_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/1-84628-137-7_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028475054", 
              "https://doi.org/10.1007/1-84628-137-7_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36970-8_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028997391", 
              "https://doi.org/10.1007/3-540-36970-8_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.comcom.2006.08.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029018296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-17298-4_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029040501", 
              "https://doi.org/10.1007/978-3-642-17298-4_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-17298-4_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029040501", 
              "https://doi.org/10.1007/978-3-642-17298-4_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-87700-4_83", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029176621", 
              "https://doi.org/10.1007/978-3-540-87700-4_83"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-87700-4_83", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029176621", 
              "https://doi.org/10.1007/978-3-540-87700-4_83"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03052150600882538", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030289845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asoc.2007.02.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030860738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-88908-3_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031653480", 
              "https://doi.org/10.1007/978-3-540-88908-3_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-88908-3_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031653480", 
              "https://doi.org/10.1007/978-3-540-88908-3_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2001576.2001667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036028196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15871-1_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037285188", 
              "https://doi.org/10.1007/978-3-642-15871-1_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15871-1_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037285188", 
              "https://doi.org/10.1007/978-3-642-15871-1_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.969927", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037339054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44719-9_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038373068", 
              "https://doi.org/10.1007/3-540-44719-9_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00354-010-0103-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043292800", 
              "https://doi.org/10.1007/s00354-010-0103-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1389095.1389235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045612971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2514/2.2974", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046467189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/0305215x.2010.491549", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050963934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.advengsoft.2008.07.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053617376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/iet-gtd.2009.0009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056826562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/iet-gtd.2009.0009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056826562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/iet-gtd.2009.0009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056826562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/4235.996017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061172126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mci.2006.1597060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061392243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tevc.2003.810755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061604586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tevc.2005.861417", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061604731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tevc.2009.2024143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061604930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tevc.2009.2027359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061604938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpwrs.2006.887963", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061777205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcc.2008.923864", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061798128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218213098000135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062965273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789812836526_0005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088789789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icec.1997.592271", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093343655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mcdm.2013.6595443", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094200095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cec.2013.6557879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094342111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cec.1999.785475", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094533321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cec.2010.5586458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094653554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cec.2007.4424920", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094942198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cec.2012.6256450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095825672"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015", 
        "datePublishedReg": "2015-01-01", 
        "description": "This chapter provides a short overview of the most significant research work that has been conducted regarding the solution of computationally expensive multi-objective optimization problems. The approaches that are briefly discussed include problem approximation, function approximation (i.e., surrogates) and evolutionary approximation (i.e., clustering and fitness inheritance). Additionally, the use of alternative approaches such as cultural algorithms, small population sizes and hybrids that use a few solutions (generated with optimizers that sacrifice diversity for the sake of a faster convergence) to reconstruct the Pareto front with powerful local search engines are also briefly discussed. In the final part of the chapter, some topics that (from the author\u2019s perspective) deserve more research, are provided.", 
        "editor": [
          {
            "familyName": "Greiner", 
            "givenName": "David", 
            "type": "Person"
          }, 
          {
            "familyName": "Galv\u00e1n", 
            "givenName": "Blas", 
            "type": "Person"
          }, 
          {
            "familyName": "P\u00e9riaux", 
            "givenName": "Jacques", 
            "type": "Person"
          }, 
          {
            "familyName": "Gauger", 
            "givenName": "Nicolas", 
            "type": "Person"
          }, 
          {
            "familyName": "Giannakoglou", 
            "givenName": "Kyriakos", 
            "type": "Person"
          }, 
          {
            "familyName": "Winter", 
            "givenName": "Gabriel", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-11541-2_1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-11540-5", 
            "978-3-319-11541-2"
          ], 
          "name": "Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences", 
          "type": "Book"
        }, 
        "name": "Multi-objective Evolutionary Algorithms in Real-World Applications: Some Recent Results and Current Challenges", 
        "pagination": "3-18", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-11541-2_1"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d9d54227b98c8b4b5ae75e529f17441f42c42f95180481869d4e87894c262287"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045730276"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-11541-2_1", 
          "https://app.dimensions.ai/details/publication/pub.1045730276"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T12:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000271.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-11541-2_1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11541-2_1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11541-2_1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11541-2_1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11541-2_1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    286 TRIPLES      23 PREDICATES      86 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-11541-2_1 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author Nb827afc3da3446a29f274e2b622ec2ac
    4 schema:citation sg:pub.10.1007/1-84628-137-7_6
    5 sg:pub.10.1007/11844297_49
    6 sg:pub.10.1007/3-540-36970-8_18
    7 sg:pub.10.1007/3-540-36970-8_3
    8 sg:pub.10.1007/3-540-44719-9_9
    9 sg:pub.10.1007/978-3-540-31880-4_43
    10 sg:pub.10.1007/978-3-540-77467-9_2
    11 sg:pub.10.1007/978-3-540-87700-4_83
    12 sg:pub.10.1007/978-3-540-88908-3_10
    13 sg:pub.10.1007/978-3-642-05165-4_4
    14 sg:pub.10.1007/978-3-642-10701-6_2
    15 sg:pub.10.1007/978-3-642-10701-6_3
    16 sg:pub.10.1007/978-3-642-15871-1_12
    17 sg:pub.10.1007/978-3-642-17298-4_24
    18 sg:pub.10.1007/978-3-642-32726-1_9
    19 sg:pub.10.1007/bf01001956
    20 sg:pub.10.1007/bfb0014822
    21 sg:pub.10.1007/s00354-010-0103-y
    22 sg:pub.10.1007/s00500-003-0328-5
    23 https://doi.org/10.1016/j.advengsoft.2008.07.002
    24 https://doi.org/10.1016/j.advengsoft.2011.04.011
    25 https://doi.org/10.1016/j.asoc.2007.02.003
    26 https://doi.org/10.1016/j.comcom.2006.08.017
    27 https://doi.org/10.1016/j.compfluid.2007.07.011
    28 https://doi.org/10.1016/j.cor.2009.02.006
    29 https://doi.org/10.1016/j.ejor.2006.08.008
    30 https://doi.org/10.1016/j.engappai.2012.09.020
    31 https://doi.org/10.1049/iet-gtd.2009.0009
    32 https://doi.org/10.1080/03052150600882538
    33 https://doi.org/10.1080/0305215x.2010.491549
    34 https://doi.org/10.1109/4235.996017
    35 https://doi.org/10.1109/cec.1999.785475
    36 https://doi.org/10.1109/cec.2007.4424920
    37 https://doi.org/10.1109/cec.2010.5586458
    38 https://doi.org/10.1109/cec.2012.6256450
    39 https://doi.org/10.1109/cec.2013.6557879
    40 https://doi.org/10.1109/icec.1997.592271
    41 https://doi.org/10.1109/mcdm.2013.6595443
    42 https://doi.org/10.1109/mci.2006.1597060
    43 https://doi.org/10.1109/tevc.2003.810755
    44 https://doi.org/10.1109/tevc.2005.861417
    45 https://doi.org/10.1109/tevc.2009.2024143
    46 https://doi.org/10.1109/tevc.2009.2027359
    47 https://doi.org/10.1109/tpwrs.2006.887963
    48 https://doi.org/10.1109/tsmcc.2008.923864
    49 https://doi.org/10.1117/12.969927
    50 https://doi.org/10.1142/9789812836526_0005
    51 https://doi.org/10.1142/s0218213098000135
    52 https://doi.org/10.1145/1389095.1389235
    53 https://doi.org/10.1145/2001576.2001667
    54 https://doi.org/10.1145/315891.316014
    55 https://doi.org/10.1145/331499.331504
    56 https://doi.org/10.1162/106365600568167
    57 https://doi.org/10.1162/106365600568202
    58 https://doi.org/10.2514/2.2974
    59 https://doi.org/10.2514/6.2004-4326
    60 https://doi.org/10.2514/6.2006-1475
    61 https://doi.org/10.2514/6.2006-7003
    62 https://doi.org/10.2514/6.2007-1169
    63 schema:datePublished 2015
    64 schema:datePublishedReg 2015-01-01
    65 schema:description This chapter provides a short overview of the most significant research work that has been conducted regarding the solution of computationally expensive multi-objective optimization problems. The approaches that are briefly discussed include problem approximation, function approximation (i.e., surrogates) and evolutionary approximation (i.e., clustering and fitness inheritance). Additionally, the use of alternative approaches such as cultural algorithms, small population sizes and hybrids that use a few solutions (generated with optimizers that sacrifice diversity for the sake of a faster convergence) to reconstruct the Pareto front with powerful local search engines are also briefly discussed. In the final part of the chapter, some topics that (from the author’s perspective) deserve more research, are provided.
    66 schema:editor Nca6aecbf42384d14883d7b50649c853c
    67 schema:genre chapter
    68 schema:inLanguage en
    69 schema:isAccessibleForFree false
    70 schema:isPartOf N55dceb88c22c4e68bda873c98f993494
    71 schema:name Multi-objective Evolutionary Algorithms in Real-World Applications: Some Recent Results and Current Challenges
    72 schema:pagination 3-18
    73 schema:productId N0312b988715a43c1b5bb13184022e2e7
    74 Nbabf91fad3574d12a02da7f8785adecf
    75 Nc40737a2e2824f61a25eaba4e20ee665
    76 schema:publisher N85e95b1e5a154ddc881a85c303c4abc3
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045730276
    78 https://doi.org/10.1007/978-3-319-11541-2_1
    79 schema:sdDatePublished 2019-04-15T12:34
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher N5953daf4f73b472bb23b8fab2e069ceb
    82 schema:url http://link.springer.com/10.1007/978-3-319-11541-2_1
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset chapters
    85 rdf:type schema:Chapter
    86 N0312b988715a43c1b5bb13184022e2e7 schema:name dimensions_id
    87 schema:value pub.1045730276
    88 rdf:type schema:PropertyValue
    89 N089ae07ea5304e43930cc3a90366832b rdf:first N3f9092716cdf487eabb238b4de4f52e4
    90 rdf:rest N486ce8012328492e85f3e319d56aa1dd
    91 N19b768ca6a184785be123eb5cec9016c rdf:first N71489a256dbf4c43a18bf659c590521b
    92 rdf:rest Ndcd2d16859444c48b95af87cd57d6b03
    93 N3f9092716cdf487eabb238b4de4f52e4 schema:familyName Giannakoglou
    94 schema:givenName Kyriakos
    95 rdf:type schema:Person
    96 N486ce8012328492e85f3e319d56aa1dd rdf:first Necf25aedd7124f7da828920bf5c3d0b3
    97 rdf:rest rdf:nil
    98 N55dceb88c22c4e68bda873c98f993494 schema:isbn 978-3-319-11540-5
    99 978-3-319-11541-2
    100 schema:name Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences
    101 rdf:type schema:Book
    102 N5953daf4f73b472bb23b8fab2e069ceb schema:name Springer Nature - SN SciGraph project
    103 rdf:type schema:Organization
    104 N71489a256dbf4c43a18bf659c590521b schema:familyName Galván
    105 schema:givenName Blas
    106 rdf:type schema:Person
    107 N85e8f5cb27d444bfbcbfc1160f85e07e schema:familyName Greiner
    108 schema:givenName David
    109 rdf:type schema:Person
    110 N85e95b1e5a154ddc881a85c303c4abc3 schema:location Cham
    111 schema:name Springer International Publishing
    112 rdf:type schema:Organisation
    113 N933d2865d25945848d54cfb3ccc1597d rdf:first Nf4680ad316e84b7f8e1be97eca332076
    114 rdf:rest N089ae07ea5304e43930cc3a90366832b
    115 Nad45edc245fd4d6ba8b27a5d27074f45 schema:familyName Périaux
    116 schema:givenName Jacques
    117 rdf:type schema:Person
    118 Nb827afc3da3446a29f274e2b622ec2ac rdf:first sg:person.012160505340.13
    119 rdf:rest rdf:nil
    120 Nbabf91fad3574d12a02da7f8785adecf schema:name doi
    121 schema:value 10.1007/978-3-319-11541-2_1
    122 rdf:type schema:PropertyValue
    123 Nc40737a2e2824f61a25eaba4e20ee665 schema:name readcube_id
    124 schema:value d9d54227b98c8b4b5ae75e529f17441f42c42f95180481869d4e87894c262287
    125 rdf:type schema:PropertyValue
    126 Nca6aecbf42384d14883d7b50649c853c rdf:first N85e8f5cb27d444bfbcbfc1160f85e07e
    127 rdf:rest N19b768ca6a184785be123eb5cec9016c
    128 Ndcd2d16859444c48b95af87cd57d6b03 rdf:first Nad45edc245fd4d6ba8b27a5d27074f45
    129 rdf:rest N933d2865d25945848d54cfb3ccc1597d
    130 Necf25aedd7124f7da828920bf5c3d0b3 schema:familyName Winter
    131 schema:givenName Gabriel
    132 rdf:type schema:Person
    133 Nf4680ad316e84b7f8e1be97eca332076 schema:familyName Gauger
    134 schema:givenName Nicolas
    135 rdf:type schema:Person
    136 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Mathematical Sciences
    138 rdf:type schema:DefinedTerm
    139 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Numerical and Computational Mathematics
    141 rdf:type schema:DefinedTerm
    142 sg:person.012160505340.13 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
    143 schema:familyName Coello
    144 schema:givenName Carlos A. Coello
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160505340.13
    146 rdf:type schema:Person
    147 sg:pub.10.1007/1-84628-137-7_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028475054
    148 https://doi.org/10.1007/1-84628-137-7_6
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/11844297_49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012530304
    151 https://doi.org/10.1007/11844297_49
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/3-540-36970-8_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028997391
    154 https://doi.org/10.1007/3-540-36970-8_18
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/3-540-36970-8_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005119556
    157 https://doi.org/10.1007/3-540-36970-8_3
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/3-540-44719-9_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038373068
    160 https://doi.org/10.1007/3-540-44719-9_9
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/978-3-540-31880-4_43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023517011
    163 https://doi.org/10.1007/978-3-540-31880-4_43
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/978-3-540-77467-9_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004616688
    166 https://doi.org/10.1007/978-3-540-77467-9_2
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/978-3-540-87700-4_83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029176621
    169 https://doi.org/10.1007/978-3-540-87700-4_83
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/978-3-540-88908-3_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031653480
    172 https://doi.org/10.1007/978-3-540-88908-3_10
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/978-3-642-05165-4_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007340956
    175 https://doi.org/10.1007/978-3-642-05165-4_4
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/978-3-642-10701-6_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022976936
    178 https://doi.org/10.1007/978-3-642-10701-6_2
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/978-3-642-10701-6_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026629901
    181 https://doi.org/10.1007/978-3-642-10701-6_3
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/978-3-642-15871-1_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037285188
    184 https://doi.org/10.1007/978-3-642-15871-1_12
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/978-3-642-17298-4_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029040501
    187 https://doi.org/10.1007/978-3-642-17298-4_24
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/978-3-642-32726-1_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003654772
    190 https://doi.org/10.1007/978-3-642-32726-1_9
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/bf01001956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020579132
    193 https://doi.org/10.1007/bf01001956
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/bfb0014822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013020372
    196 https://doi.org/10.1007/bfb0014822
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s00354-010-0103-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1043292800
    199 https://doi.org/10.1007/s00354-010-0103-y
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s00500-003-0328-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025730957
    202 https://doi.org/10.1007/s00500-003-0328-5
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/j.advengsoft.2008.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053617376
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/j.advengsoft.2011.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018189037
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/j.asoc.2007.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030860738
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/j.comcom.2006.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029018296
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/j.compfluid.2007.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002510573
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/j.cor.2009.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007550486
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/j.ejor.2006.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014117674
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/j.engappai.2012.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007672706
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1049/iet-gtd.2009.0009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056826562
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1080/03052150600882538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030289845
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1080/0305215x.2010.491549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050963934
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1109/4235.996017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061172126
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1109/cec.1999.785475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094533321
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1109/cec.2007.4424920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094942198
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1109/cec.2010.5586458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094653554
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1109/cec.2012.6256450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095825672
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1109/cec.2013.6557879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094342111
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1109/icec.1997.592271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093343655
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1109/mcdm.2013.6595443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094200095
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1109/mci.2006.1597060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061392243
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1109/tevc.2003.810755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604586
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1109/tevc.2005.861417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604731
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1109/tevc.2009.2024143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604930
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1109/tevc.2009.2027359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604938
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1109/tpwrs.2006.887963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061777205
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1109/tsmcc.2008.923864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798128
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1117/12.969927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037339054
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1142/9789812836526_0005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088789789
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1142/s0218213098000135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062965273
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1145/1389095.1389235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045612971
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1145/2001576.2001667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036028196
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1145/315891.316014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022764796
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1145/331499.331504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026347712
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1162/106365600568167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022987704
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1162/106365600568202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014057085
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.2514/2.2974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046467189
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.2514/6.2004-4326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005979130
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.2514/6.2006-1475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023825565
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.2514/6.2006-7003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012976185
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.2514/6.2007-1169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022051492
    283 rdf:type schema:CreativeWork
    284 https://www.grid.ac/institutes/grid.418275.d schema:alternateName Instituto Politécnico Nacional
    285 schema:name CINVESTAV-IPN (Evolutionary Computation Group), 07360 Mexico, D.F., Mexico
    286 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...