Ontology type: schema:Chapter
2014
AUTHORSKarine Beauchard , Piermarco Cannarsa
ABSTRACTThe approach to Lipschitz stability for uniformly parabolic equations introduced by Imanuvilov and Yamamoto in 1998 based on Carleman estimates, seems hard to apply to the case of Grushin-type operators studied in this paper. Indeed, such estimates are still missing for parabolic operators degenerating in the interior of the space domain. Nevertheless, we are able to prove Lipschitz stability results for inverse coefficient problems for such operators, with locally distributed measurements in arbitrary space dimension. For this purpose, we follow a strategy that combines Fourier decomposition and Carleman inequalities for certain heat equations with nonsmooth coefficients (solved by the Fourier modes). More... »
PAGES79-91
New Prospects in Direct, Inverse and Control Problems for Evolution Equations
ISBN
978-3-319-11405-7
978-3-319-11406-4
http://scigraph.springernature.com/pub.10.1007/978-3-319-11406-4_4
DOIhttp://dx.doi.org/10.1007/978-3-319-11406-4_4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1049454351
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Laurent Schwartz Center for Mathematics",
"id": "https://www.grid.ac/institutes/grid.463843.e",
"name": [
"CMLS, Ecole Polytechnique, 91128\u00a0Palaiseau Cedex, France"
],
"type": "Organization"
},
"familyName": "Beauchard",
"givenName": "Karine",
"id": "sg:person.015122626127.55",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015122626127.55"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Rome Tor Vergata",
"id": "https://www.grid.ac/institutes/grid.6530.0",
"name": [
"Dipartimento di Matematica, Universit\u00e0 di Roma Tor Vergata, 00133\u00a0Roma, Italy"
],
"type": "Organization"
},
"familyName": "Cannarsa",
"givenName": "Piermarco",
"id": "sg:person.014257010655.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1112/blms/20.4.375",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011631888"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00028-006-0222-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013053088",
"https://doi.org/10.1007/s00028-006-0222-6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0266-5611/17/4/340",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015927772"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0266-5611/30/2/025006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021748312"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.crma.2008.12.011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034683083"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.geomphys.2012.04.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035485602"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0266-5611/26/10/105003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050079640"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0266-5611/26/10/105003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050079640"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/04062062x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062845448"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3934/nhm.2007.2.695",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1071742730"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4171/jems/428",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072318034"
],
"type": "CreativeWork"
}
],
"datePublished": "2014",
"datePublishedReg": "2014-01-01",
"description": "The approach to Lipschitz stability for uniformly parabolic equations introduced by Imanuvilov and Yamamoto in 1998 based on Carleman estimates, seems hard to apply to the case of Grushin-type operators studied in this paper. Indeed, such estimates are still missing for parabolic operators degenerating in the interior of the space domain. Nevertheless, we are able to prove Lipschitz stability results for inverse coefficient problems for such operators, with locally distributed measurements in arbitrary space dimension. For this purpose, we follow a strategy that combines Fourier decomposition and Carleman inequalities for certain heat equations with nonsmooth coefficients (solved by the Fourier modes).",
"editor": [
{
"familyName": "Favini",
"givenName": "Angelo",
"type": "Person"
},
{
"familyName": "Fragnelli",
"givenName": "Genni",
"type": "Person"
},
{
"familyName": "Mininni",
"givenName": "Rosa Maria",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-11406-4_4",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-11405-7",
"978-3-319-11406-4"
],
"name": "New Prospects in Direct, Inverse and Control Problems for Evolution Equations",
"type": "Book"
},
"name": "Inverse Coefficient Problem for Grushin-Type Parabolic Operators",
"pagination": "79-91",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-11406-4_4"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"eb96f6efcc8c41ced9607f65578fd4e33ba1164cdb14fda33636a68d17919542"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1049454351"
]
}
],
"publisher": {
"location": "Cham",
"name": "Springer International Publishing",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-11406-4_4",
"https://app.dimensions.ai/details/publication/pub.1049454351"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T16:19",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000274.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-319-11406-4_4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11406-4_4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11406-4_4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11406-4_4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11406-4_4'
This table displays all metadata directly associated to this object as RDF triples.
116 TRIPLES
23 PREDICATES
37 URIs
20 LITERALS
8 BLANK NODES