Inverse Coefficient Problem for Grushin-Type Parabolic Operators View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Karine Beauchard , Piermarco Cannarsa

ABSTRACT

The approach to Lipschitz stability for uniformly parabolic equations introduced by Imanuvilov and Yamamoto in 1998 based on Carleman estimates, seems hard to apply to the case of Grushin-type operators studied in this paper. Indeed, such estimates are still missing for parabolic operators degenerating in the interior of the space domain. Nevertheless, we are able to prove Lipschitz stability results for inverse coefficient problems for such operators, with locally distributed measurements in arbitrary space dimension. For this purpose, we follow a strategy that combines Fourier decomposition and Carleman inequalities for certain heat equations with nonsmooth coefficients (solved by the Fourier modes). More... »

PAGES

79-91

References to SciGraph publications

Book

TITLE

New Prospects in Direct, Inverse and Control Problems for Evolution Equations

ISBN

978-3-319-11405-7
978-3-319-11406-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-11406-4_4

DOI

http://dx.doi.org/10.1007/978-3-319-11406-4_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049454351


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laurent Schwartz Center for Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.463843.e", 
          "name": [
            "CMLS, Ecole Polytechnique, 91128\u00a0Palaiseau Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beauchard", 
        "givenName": "Karine", 
        "id": "sg:person.015122626127.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015122626127.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Roma Tor Vergata, 00133\u00a0Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cannarsa", 
        "givenName": "Piermarco", 
        "id": "sg:person.014257010655.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1112/blms/20.4.375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011631888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00028-006-0222-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013053088", 
          "https://doi.org/10.1007/s00028-006-0222-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/17/4/340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015927772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/30/2/025006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021748312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crma.2008.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034683083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomphys.2012.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035485602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/26/10/105003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050079640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/26/10/105003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050079640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/04062062x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062845448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/nhm.2007.2.695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071742730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/jems/428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072318034"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "The approach to Lipschitz stability for uniformly parabolic equations introduced by Imanuvilov and Yamamoto in 1998 based on Carleman estimates, seems hard to apply to the case of Grushin-type operators studied in this paper. Indeed, such estimates are still missing for parabolic operators degenerating in the interior of the space domain. Nevertheless, we are able to prove Lipschitz stability results for inverse coefficient problems for such operators, with locally distributed measurements in arbitrary space dimension. For this purpose, we follow a strategy that combines Fourier decomposition and Carleman inequalities for certain heat equations with nonsmooth coefficients (solved by the Fourier modes).", 
    "editor": [
      {
        "familyName": "Favini", 
        "givenName": "Angelo", 
        "type": "Person"
      }, 
      {
        "familyName": "Fragnelli", 
        "givenName": "Genni", 
        "type": "Person"
      }, 
      {
        "familyName": "Mininni", 
        "givenName": "Rosa Maria", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-11406-4_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-11405-7", 
        "978-3-319-11406-4"
      ], 
      "name": "New Prospects in Direct, Inverse and Control Problems for Evolution Equations", 
      "type": "Book"
    }, 
    "name": "Inverse Coefficient Problem for Grushin-Type Parabolic Operators", 
    "pagination": "79-91", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-11406-4_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "eb96f6efcc8c41ced9607f65578fd4e33ba1164cdb14fda33636a68d17919542"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049454351"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-11406-4_4", 
      "https://app.dimensions.ai/details/publication/pub.1049454351"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000274.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-11406-4_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11406-4_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11406-4_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11406-4_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11406-4_4'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-11406-4_4 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nc145dfa82a2d4e4a8befac3f66c3b219
4 schema:citation sg:pub.10.1007/s00028-006-0222-6
5 https://doi.org/10.1016/j.crma.2008.12.011
6 https://doi.org/10.1016/j.geomphys.2012.04.004
7 https://doi.org/10.1088/0266-5611/17/4/340
8 https://doi.org/10.1088/0266-5611/26/10/105003
9 https://doi.org/10.1088/0266-5611/30/2/025006
10 https://doi.org/10.1112/blms/20.4.375
11 https://doi.org/10.1137/04062062x
12 https://doi.org/10.3934/nhm.2007.2.695
13 https://doi.org/10.4171/jems/428
14 schema:datePublished 2014
15 schema:datePublishedReg 2014-01-01
16 schema:description The approach to Lipschitz stability for uniformly parabolic equations introduced by Imanuvilov and Yamamoto in 1998 based on Carleman estimates, seems hard to apply to the case of Grushin-type operators studied in this paper. Indeed, such estimates are still missing for parabolic operators degenerating in the interior of the space domain. Nevertheless, we are able to prove Lipschitz stability results for inverse coefficient problems for such operators, with locally distributed measurements in arbitrary space dimension. For this purpose, we follow a strategy that combines Fourier decomposition and Carleman inequalities for certain heat equations with nonsmooth coefficients (solved by the Fourier modes).
17 schema:editor Ndf2eb4c518c14b31b4239c11336ce13e
18 schema:genre chapter
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf Nbe551654eba544d781ca7a62add1e6dd
22 schema:name Inverse Coefficient Problem for Grushin-Type Parabolic Operators
23 schema:pagination 79-91
24 schema:productId N0cf4e313efcd4e848e39669bd80c0d64
25 N264c4dca4192466e9414ecb89bca2ff6
26 Ndd851b68b7e84e3eb5d5cf6b1113e6f0
27 schema:publisher N4b4ce99ee30d4d2a8fa0236001548db5
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049454351
29 https://doi.org/10.1007/978-3-319-11406-4_4
30 schema:sdDatePublished 2019-04-15T16:19
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N9d38b104b5e1441fb9ca28946718d651
33 schema:url http://link.springer.com/10.1007/978-3-319-11406-4_4
34 sgo:license sg:explorer/license/
35 sgo:sdDataset chapters
36 rdf:type schema:Chapter
37 N0cf4e313efcd4e848e39669bd80c0d64 schema:name readcube_id
38 schema:value eb96f6efcc8c41ced9607f65578fd4e33ba1164cdb14fda33636a68d17919542
39 rdf:type schema:PropertyValue
40 N1220f4817f4a43ffa51b066173a070f4 rdf:first N51471806c4d146b3a5207b58b8a8f5f4
41 rdf:rest Nc4b1ee66baaf41c18c277df2f1e58a42
42 N264c4dca4192466e9414ecb89bca2ff6 schema:name doi
43 schema:value 10.1007/978-3-319-11406-4_4
44 rdf:type schema:PropertyValue
45 N3beec91fe07d4f068d766ecb4a3e4620 schema:familyName Mininni
46 schema:givenName Rosa Maria
47 rdf:type schema:Person
48 N4b4ce99ee30d4d2a8fa0236001548db5 schema:location Cham
49 schema:name Springer International Publishing
50 rdf:type schema:Organisation
51 N51471806c4d146b3a5207b58b8a8f5f4 schema:familyName Fragnelli
52 schema:givenName Genni
53 rdf:type schema:Person
54 N69e8ac4a21614b7eafb9f6cfdd5bc7db schema:familyName Favini
55 schema:givenName Angelo
56 rdf:type schema:Person
57 N9486bf84f39848d3a990de5320691e5c rdf:first sg:person.014257010655.09
58 rdf:rest rdf:nil
59 N9d38b104b5e1441fb9ca28946718d651 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 Nbe551654eba544d781ca7a62add1e6dd schema:isbn 978-3-319-11405-7
62 978-3-319-11406-4
63 schema:name New Prospects in Direct, Inverse and Control Problems for Evolution Equations
64 rdf:type schema:Book
65 Nc145dfa82a2d4e4a8befac3f66c3b219 rdf:first sg:person.015122626127.55
66 rdf:rest N9486bf84f39848d3a990de5320691e5c
67 Nc4b1ee66baaf41c18c277df2f1e58a42 rdf:first N3beec91fe07d4f068d766ecb4a3e4620
68 rdf:rest rdf:nil
69 Ndd851b68b7e84e3eb5d5cf6b1113e6f0 schema:name dimensions_id
70 schema:value pub.1049454351
71 rdf:type schema:PropertyValue
72 Ndf2eb4c518c14b31b4239c11336ce13e rdf:first N69e8ac4a21614b7eafb9f6cfdd5bc7db
73 rdf:rest N1220f4817f4a43ffa51b066173a070f4
74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
75 schema:name Mathematical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
78 schema:name Numerical and Computational Mathematics
79 rdf:type schema:DefinedTerm
80 sg:person.014257010655.09 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
81 schema:familyName Cannarsa
82 schema:givenName Piermarco
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09
84 rdf:type schema:Person
85 sg:person.015122626127.55 schema:affiliation https://www.grid.ac/institutes/grid.463843.e
86 schema:familyName Beauchard
87 schema:givenName Karine
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015122626127.55
89 rdf:type schema:Person
90 sg:pub.10.1007/s00028-006-0222-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013053088
91 https://doi.org/10.1007/s00028-006-0222-6
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.crma.2008.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034683083
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.geomphys.2012.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035485602
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1088/0266-5611/17/4/340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015927772
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1088/0266-5611/26/10/105003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050079640
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1088/0266-5611/30/2/025006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021748312
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1112/blms/20.4.375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011631888
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1137/04062062x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062845448
106 rdf:type schema:CreativeWork
107 https://doi.org/10.3934/nhm.2007.2.695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071742730
108 rdf:type schema:CreativeWork
109 https://doi.org/10.4171/jems/428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072318034
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.463843.e schema:alternateName Laurent Schwartz Center for Mathematics
112 schema:name CMLS, Ecole Polytechnique, 91128 Palaiseau Cedex, France
113 rdf:type schema:Organization
114 https://www.grid.ac/institutes/grid.6530.0 schema:alternateName University of Rome Tor Vergata
115 schema:name Dipartimento di Matematica, Università di Roma Tor Vergata, 00133 Roma, Italy
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...