Metallic Nanostructures for Electronics and Optoelectronics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014-11-01

AUTHORS

Shan Zhou , Yujie Xiong

ABSTRACT

Metallic nanostructures have played an important role in electronic and optoelectronic devices. This chapter summarizes the related progress with a focus on metallic nanowires. We first outline the fabrication of transparent conductive electrodes with silver nanowires and copper nanowires, followed by various methods to improve their performance in electronic devices. We then discuss another perspective of metallic nanowires—plasmonic waveguiding that can be potentially implemented in optoelectronic devices and can overcome limitation of traditional electronic circuits in the era of “big data”. In this section, light coupling as well as plasmon propagation in silver nanowire waveguides and functional parts of nanophotonic circuits are overviewed. At the end, a few well-established protocols for synthesizing metallic nanowires are presented, allowing the readers to further explore the related research. More... »

PAGES

271-301

Book

TITLE

Metallic Nanostructures

ISBN

978-3-319-11303-6
978-3-319-11304-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-11304-3_9

DOI

http://dx.doi.org/10.1007/978-3-319-11304-3_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050193245


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Shan", 
        "id": "sg:person.013544723031.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013544723031.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiong", 
        "givenName": "Yujie", 
        "id": "sg:person.0600113217.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600113217.27"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014-11-01", 
    "datePublishedReg": "2014-11-01", 
    "description": "Metallic nanostructures have played an important role in electronic and optoelectronic devices. This chapter summarizes the related progress with a focus on metallic nanowires. We first outline the fabrication of transparent conductive electrodes with silver nanowires and copper nanowires, followed by various methods to improve their performance in electronic devices. We then discuss another perspective of metallic nanowires\u2014plasmonic waveguiding that can be potentially implemented in optoelectronic devices and can overcome limitation of traditional electronic circuits in the era of \u201cbig data\u201d. In this section, light coupling as well as plasmon propagation in silver nanowire waveguides and functional parts of nanophotonic circuits are overviewed. At the end, a few well-established protocols for synthesizing metallic nanowires are presented, allowing the readers to further explore the related research.", 
    "editor": [
      {
        "familyName": "Xiong", 
        "givenName": "Yujie", 
        "type": "Person"
      }, 
      {
        "familyName": "Lu", 
        "givenName": "Xianmao", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-11304-3_9", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-11303-6", 
        "978-3-319-11304-3"
      ], 
      "name": "Metallic Nanostructures", 
      "type": "Book"
    }, 
    "keywords": [
      "metallic nanostructures", 
      "optoelectronic devices", 
      "metallic nanowires", 
      "transparent conductive electrodes", 
      "traditional electronic circuits", 
      "nanophotonic circuits", 
      "silver nanowires", 
      "nanowire waveguides", 
      "conductive electrodes", 
      "copper nanowires", 
      "light coupling", 
      "nanowires", 
      "electronic devices", 
      "plasmon propagation", 
      "electronic circuits", 
      "nanostructures", 
      "devices", 
      "circuit", 
      "optoelectronics", 
      "fabrication", 
      "waveguiding", 
      "electronics", 
      "waveguide", 
      "functional parts", 
      "electrode", 
      "related progress", 
      "protocol", 
      "performance", 
      "related research", 
      "propagation", 
      "progress", 
      "limitations", 
      "coupling", 
      "method", 
      "big data", 
      "important role", 
      "end", 
      "chapter", 
      "readers", 
      "sections", 
      "era", 
      "part", 
      "focus", 
      "research", 
      "data", 
      "perspective", 
      "role"
    ], 
    "name": "Metallic Nanostructures for Electronics and Optoelectronics", 
    "pagination": "271-301", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050193245"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-11304-3_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-11304-3_9", 
      "https://app.dimensions.ai/details/publication/pub.1050193245"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_262.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-11304-3_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11304-3_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11304-3_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11304-3_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11304-3_9'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      22 PREDICATES      70 URIs      63 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-11304-3_9 schema:about anzsrc-for:10
2 anzsrc-for:1007
3 schema:author N957b06d1f60c439593621c6d5f346f3c
4 schema:datePublished 2014-11-01
5 schema:datePublishedReg 2014-11-01
6 schema:description Metallic nanostructures have played an important role in electronic and optoelectronic devices. This chapter summarizes the related progress with a focus on metallic nanowires. We first outline the fabrication of transparent conductive electrodes with silver nanowires and copper nanowires, followed by various methods to improve their performance in electronic devices. We then discuss another perspective of metallic nanowires—plasmonic waveguiding that can be potentially implemented in optoelectronic devices and can overcome limitation of traditional electronic circuits in the era of “big data”. In this section, light coupling as well as plasmon propagation in silver nanowire waveguides and functional parts of nanophotonic circuits are overviewed. At the end, a few well-established protocols for synthesizing metallic nanowires are presented, allowing the readers to further explore the related research.
7 schema:editor Na8a4ab61a4c648e193806c25fa036dc8
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Ne4c42925f38948bfb90bd3865b9da3ba
11 schema:keywords big data
12 chapter
13 circuit
14 conductive electrodes
15 copper nanowires
16 coupling
17 data
18 devices
19 electrode
20 electronic circuits
21 electronic devices
22 electronics
23 end
24 era
25 fabrication
26 focus
27 functional parts
28 important role
29 light coupling
30 limitations
31 metallic nanostructures
32 metallic nanowires
33 method
34 nanophotonic circuits
35 nanostructures
36 nanowire waveguides
37 nanowires
38 optoelectronic devices
39 optoelectronics
40 part
41 performance
42 perspective
43 plasmon propagation
44 progress
45 propagation
46 protocol
47 readers
48 related progress
49 related research
50 research
51 role
52 sections
53 silver nanowires
54 traditional electronic circuits
55 transparent conductive electrodes
56 waveguide
57 waveguiding
58 schema:name Metallic Nanostructures for Electronics and Optoelectronics
59 schema:pagination 271-301
60 schema:productId N44427da378e74f6c9d205db0b4102c0c
61 Nc5f5358d62d44a2698817f10b35dbefb
62 schema:publisher Nfd60a84e74c3423092511f878d5c9d75
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050193245
64 https://doi.org/10.1007/978-3-319-11304-3_9
65 schema:sdDatePublished 2022-12-01T06:50
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N099c7c9323e348fdb4b05ffb2b9e0641
68 schema:url https://doi.org/10.1007/978-3-319-11304-3_9
69 sgo:license sg:explorer/license/
70 sgo:sdDataset chapters
71 rdf:type schema:Chapter
72 N099c7c9323e348fdb4b05ffb2b9e0641 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N312d62979ba94e77a1786bb5007075ee schema:familyName Lu
75 schema:givenName Xianmao
76 rdf:type schema:Person
77 N44427da378e74f6c9d205db0b4102c0c schema:name dimensions_id
78 schema:value pub.1050193245
79 rdf:type schema:PropertyValue
80 N579d6f75c5284d039db83c15aae257cc rdf:first N312d62979ba94e77a1786bb5007075ee
81 rdf:rest rdf:nil
82 N760f638b00ae474c93b9108c35613589 schema:familyName Xiong
83 schema:givenName Yujie
84 rdf:type schema:Person
85 N957b06d1f60c439593621c6d5f346f3c rdf:first sg:person.013544723031.65
86 rdf:rest Ncaa4f4c33ac049f79a3cee58f85cee37
87 Na8a4ab61a4c648e193806c25fa036dc8 rdf:first N760f638b00ae474c93b9108c35613589
88 rdf:rest N579d6f75c5284d039db83c15aae257cc
89 Nc5f5358d62d44a2698817f10b35dbefb schema:name doi
90 schema:value 10.1007/978-3-319-11304-3_9
91 rdf:type schema:PropertyValue
92 Ncaa4f4c33ac049f79a3cee58f85cee37 rdf:first sg:person.0600113217.27
93 rdf:rest rdf:nil
94 Ne4c42925f38948bfb90bd3865b9da3ba schema:isbn 978-3-319-11303-6
95 978-3-319-11304-3
96 schema:name Metallic Nanostructures
97 rdf:type schema:Book
98 Nfd60a84e74c3423092511f878d5c9d75 schema:name Springer Nature
99 rdf:type schema:Organisation
100 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
101 schema:name Technology
102 rdf:type schema:DefinedTerm
103 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
104 schema:name Nanotechnology
105 rdf:type schema:DefinedTerm
106 sg:person.013544723031.65 schema:affiliation grid-institutes:grid.59053.3a
107 schema:familyName Zhou
108 schema:givenName Shan
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013544723031.65
110 rdf:type schema:Person
111 sg:person.0600113217.27 schema:affiliation grid-institutes:grid.59053.3a
112 schema:familyName Xiong
113 schema:givenName Yujie
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600113217.27
115 rdf:type schema:Person
116 grid-institutes:grid.59053.3a schema:alternateName School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
117 schema:name School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...