An Efficient Multi Level Thresholding Method for Image Segmentation Based on the Hybridization of Modified PSO and Otsu’s Method View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Fayçal Hamdaoui , Anis Sakly , Abdellatif Mtibaa

ABSTRACT

In the area of image processing, segmentation of an image into multiple regions is very important for classification and recognition steps. It has been widely used in many application fields such as medical image analysis to characterize and detect anatomical structures, robotics features extraction for mobile robot localization and detection and map procession for lines and legends finding. Many techniques have been developed in the field of image segmentation. Methods based on intelligent techniques are the most used such as Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), and Particle Swarm Optimization (PSO) called metaheuristics algorithms. In this paper, we describe a novel method for segmentation of images based on one of the most popular and efficient metaheuristic algorithm called Particle Swarm optimization (PSO) for determining multilevel threshold for a given image. The proposed method takes advantage of the characteristics of the particle swarm optimization and improves the objective function value to updating the velocity and the position of particles. This method is compared to the basic PSO method, also, it is compared with other known multilevel segmentation methods to demonstrate its efficiency. Experimental results show that this method can reliably segment and give threshold values than other methods considering different measures. More... »

PAGES

343-367

References to SciGraph publications

Book

TITLE

Computational Intelligence Applications in Modeling and Control

ISBN

978-3-319-11016-5
978-3-319-11017-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-11017-2_14

DOI

http://dx.doi.org/10.1007/978-3-319-11017-2_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022157353


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Monastir", 
          "id": "https://www.grid.ac/institutes/grid.411838.7", 
          "name": [
            "Laboratory of E\u03bcE, Faculty of Sciences of Monastir (FSM), University of Monastir, Monastir, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hamdaoui", 
        "givenName": "Fay\u00e7al", 
        "id": "sg:person.016502432127.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016502432127.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Monastir", 
          "id": "https://www.grid.ac/institutes/grid.411838.7", 
          "name": [
            "Industrial Systems Study and Renewable Energy (ESIER), National Engineering School of Monastir (ENIM), Electrical Department, University of Monastir, Monastir, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakly", 
        "givenName": "Anis", 
        "id": "sg:person.014424414474.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424414474.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Monastir", 
          "id": "https://www.grid.ac/institutes/grid.411838.7", 
          "name": [
            "Laboratory of E\u03bcE, Faculty of Sciences of Monastir (FSM), National Engineering School of Monastir (ENIM), Electrical Department, University of Monastir, Monastir, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mtibaa", 
        "givenName": "Abdellatif", 
        "id": "sg:person.012661166623.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012661166623.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11760-013-0546-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000285001", 
          "https://doi.org/10.1007/s11760-013-0546-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11771-009-0106-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001794850", 
          "https://doi.org/10.1007/s11771-009-0106-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11771-009-0106-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001794850", 
          "https://doi.org/10.1007/s11771-009-0106-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2013.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002056879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-16527-6_40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002285240", 
          "https://doi.org/10.1007/978-3-642-16527-6_40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-16527-6_40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002285240", 
          "https://doi.org/10.1007/978-3-642-16527-6_40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00939380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004391225", 
          "https://doi.org/10.1007/bf00939380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2007.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006312367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2007.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006312367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-35314-7_79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008506032", 
          "https://doi.org/10.1007/978-3-642-35314-7_79"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-40602-7_45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010120891", 
          "https://doi.org/10.1007/978-3-642-40602-7_45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2012.03.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012223731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/927591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012794656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/e13040841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016003010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2011.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016299721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3975(00)00406-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016547244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2010.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020888772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ipl.2006.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021184235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/690349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021352475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2012.04.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023367584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-00560-7_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024683226", 
          "https://doi.org/10.1007/978-3-319-00560-7_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2009.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025294781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-34531-9_57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027650488", 
          "https://doi.org/10.1007/978-3-642-34531-9_57"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-39094-4_37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029810827", 
          "https://doi.org/10.1007/978-3-642-39094-4_37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00462870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030672184", 
          "https://doi.org/10.1007/bf00462870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00462870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030672184", 
          "https://doi.org/10.1007/bf00462870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5193(05)80686-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032564203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2013.10.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032690751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2008.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035512284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72950-1_77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036909538", 
          "https://doi.org/10.1007/978-3-540-72950-1_77"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8655(03)00166-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037494364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8655(03)00166-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037494364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.swevo.2013.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038125660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.measurement.2013.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038192298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ima.22060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038373286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cviu.2007.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039705744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2008.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040336889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-38715-9_49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041509458", 
          "https://doi.org/10.1007/978-3-642-38715-9_49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-34690-6_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041966207", 
          "https://doi.org/10.1007/978-3-540-34690-6_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-34690-6_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041966207", 
          "https://doi.org/10.1007/978-3-540-34690-6_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2006.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042537623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1979.4310076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042805607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2009.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042828416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8140(03)00270-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045514594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.214.693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048951358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/jmihi.2014.1217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051487111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2013.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052676304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9496(2003)129:3(210)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057605981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3477.484436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061158013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/41.538609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061169160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2013.2260552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061612977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcc.2010.2049649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061798232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.11591/telkomnika.v11i9.3273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063288059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14429/dsj.60.356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067307211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5815/ijigsp.2013.01.07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073148688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2007.4353607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077517839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iceas.2011.6147093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093459081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnn.1995.488968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093669333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/nasnit.2011.6111137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093872481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnnsp.2003.1279340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094073054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/bibmw.2011.6112368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094386179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cbms.2012.6266308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094459645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/artcom.2009.115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094842157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2012.6252919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094911126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mhs.1995.494215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095205003"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "In the area of image processing, segmentation of an image into multiple regions is very important for classification and recognition steps. It has been widely used in many application fields such as medical image analysis to characterize and detect anatomical structures, robotics features extraction for mobile robot localization and detection and map procession for lines and legends finding. Many techniques have been developed in the field of image segmentation. Methods based on intelligent techniques are the most used such as Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), and Particle Swarm Optimization (PSO) called metaheuristics algorithms. In this paper, we describe a novel method for segmentation of images based on one of the most popular and efficient metaheuristic algorithm called Particle Swarm optimization (PSO) for determining multilevel threshold for a given image. The proposed method takes advantage of the characteristics of the particle swarm optimization and improves the objective function value to updating the velocity and the position of particles. This method is compared to the basic PSO method, also, it is compared with other known multilevel segmentation methods to demonstrate its efficiency. Experimental results show that this method can reliably segment and give threshold values than other methods considering different measures.", 
    "editor": [
      {
        "familyName": "Azar", 
        "givenName": "Ahmad Taher", 
        "type": "Person"
      }, 
      {
        "familyName": "Vaidyanathan", 
        "givenName": "Sundarapandian", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-11017-2_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-11016-5", 
        "978-3-319-11017-2"
      ], 
      "name": "Computational Intelligence Applications in Modeling and Control", 
      "type": "Book"
    }, 
    "name": "An Efficient Multi Level Thresholding Method for Image Segmentation Based on the Hybridization of Modified PSO and Otsu\u2019s Method", 
    "pagination": "343-367", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-11017-2_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "699037240e8736a9355362e41a1810c15f74d110818ea5c59e4bd7b61a625cac"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022157353"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-11017-2_14", 
      "https://app.dimensions.ai/details/publication/pub.1022157353"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000256.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-11017-2_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11017-2_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11017-2_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11017-2_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-11017-2_14'


 

This table displays all metadata directly associated to this object as RDF triples.

276 TRIPLES      23 PREDICATES      86 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-11017-2_14 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N8a0f8fa75c6a42f4ab8e01982b81f0b8
4 schema:citation sg:pub.10.1007/978-3-319-00560-7_14
5 sg:pub.10.1007/978-3-540-34690-6_1
6 sg:pub.10.1007/978-3-540-72950-1_77
7 sg:pub.10.1007/978-3-642-16527-6_40
8 sg:pub.10.1007/978-3-642-34531-9_57
9 sg:pub.10.1007/978-3-642-35314-7_79
10 sg:pub.10.1007/978-3-642-38715-9_49
11 sg:pub.10.1007/978-3-642-39094-4_37
12 sg:pub.10.1007/978-3-642-40602-7_45
13 sg:pub.10.1007/bf00462870
14 sg:pub.10.1007/bf00939380
15 sg:pub.10.1007/s11760-013-0546-y
16 sg:pub.10.1007/s11771-009-0106-3
17 https://doi.org/10.1002/ima.22060
18 https://doi.org/10.1016/j.asoc.2007.05.007
19 https://doi.org/10.1016/j.asoc.2012.03.072
20 https://doi.org/10.1016/j.camwa.2008.10.012
21 https://doi.org/10.1016/j.cmpb.2013.03.012
22 https://doi.org/10.1016/j.cor.2011.07.010
23 https://doi.org/10.1016/j.cviu.2007.09.001
24 https://doi.org/10.1016/j.engappai.2009.09.011
25 https://doi.org/10.1016/j.eswa.2012.04.078
26 https://doi.org/10.1016/j.eswa.2013.10.059
27 https://doi.org/10.1016/j.ins.2013.07.005
28 https://doi.org/10.1016/j.ipl.2006.10.005
29 https://doi.org/10.1016/j.measurement.2013.09.031
30 https://doi.org/10.1016/j.patcog.2009.04.013
31 https://doi.org/10.1016/j.patrec.2006.11.007
32 https://doi.org/10.1016/j.patrec.2008.10.003
33 https://doi.org/10.1016/j.patrec.2010.06.002
34 https://doi.org/10.1016/j.swevo.2013.06.003
35 https://doi.org/10.1016/s0022-5193(05)80686-1
36 https://doi.org/10.1016/s0167-8140(03)00270-6
37 https://doi.org/10.1016/s0167-8655(03)00166-1
38 https://doi.org/10.1016/s0304-3975(00)00406-0
39 https://doi.org/10.1061/(asce)0733-9496(2003)129:3(210)
40 https://doi.org/10.1109/3477.484436
41 https://doi.org/10.1109/41.538609
42 https://doi.org/10.1109/artcom.2009.115
43 https://doi.org/10.1109/bibmw.2011.6112368
44 https://doi.org/10.1109/cbms.2012.6266308
45 https://doi.org/10.1109/cec.2012.6252919
46 https://doi.org/10.1109/iceas.2011.6147093
47 https://doi.org/10.1109/icnn.1995.488968
48 https://doi.org/10.1109/icnnsp.2003.1279340
49 https://doi.org/10.1109/iembs.2007.4353607
50 https://doi.org/10.1109/mhs.1995.494215
51 https://doi.org/10.1109/nasnit.2011.6111137
52 https://doi.org/10.1109/tgrs.2013.2260552
53 https://doi.org/10.1109/tsmc.1979.4310076
54 https://doi.org/10.1109/tsmcc.2010.2049649
55 https://doi.org/10.1155/2013/927591
56 https://doi.org/10.1155/2014/690349
57 https://doi.org/10.11591/telkomnika.v11i9.3273
58 https://doi.org/10.1166/jmihi.2014.1217
59 https://doi.org/10.14429/dsj.60.356
60 https://doi.org/10.3390/e13040841
61 https://doi.org/10.4028/www.scientific.net/amr.214.693
62 https://doi.org/10.5815/ijigsp.2013.01.07
63 schema:datePublished 2015
64 schema:datePublishedReg 2015-01-01
65 schema:description In the area of image processing, segmentation of an image into multiple regions is very important for classification and recognition steps. It has been widely used in many application fields such as medical image analysis to characterize and detect anatomical structures, robotics features extraction for mobile robot localization and detection and map procession for lines and legends finding. Many techniques have been developed in the field of image segmentation. Methods based on intelligent techniques are the most used such as Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), and Particle Swarm Optimization (PSO) called metaheuristics algorithms. In this paper, we describe a novel method for segmentation of images based on one of the most popular and efficient metaheuristic algorithm called Particle Swarm optimization (PSO) for determining multilevel threshold for a given image. The proposed method takes advantage of the characteristics of the particle swarm optimization and improves the objective function value to updating the velocity and the position of particles. This method is compared to the basic PSO method, also, it is compared with other known multilevel segmentation methods to demonstrate its efficiency. Experimental results show that this method can reliably segment and give threshold values than other methods considering different measures.
66 schema:editor N9c92acbf04e4420c8bd44c7aa2e9371b
67 schema:genre chapter
68 schema:inLanguage en
69 schema:isAccessibleForFree false
70 schema:isPartOf Ne522251cc674474ea98fc0bad70d1636
71 schema:name An Efficient Multi Level Thresholding Method for Image Segmentation Based on the Hybridization of Modified PSO and Otsu’s Method
72 schema:pagination 343-367
73 schema:productId N4f9827e1e0e34875b71285af61700604
74 N6cab571039184949afae00ba1b5ea3df
75 Nd72b366d85f249e59fbb75e32ff443c8
76 schema:publisher Nb5fa7cb4a56f44539bf31dd71f9efca2
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022157353
78 https://doi.org/10.1007/978-3-319-11017-2_14
79 schema:sdDatePublished 2019-04-15T21:58
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N6f5d761615654411b31de36f45dd9573
82 schema:url http://link.springer.com/10.1007/978-3-319-11017-2_14
83 sgo:license sg:explorer/license/
84 sgo:sdDataset chapters
85 rdf:type schema:Chapter
86 N0154bb7a598b483f8c4bc22ea86621a9 schema:familyName Azar
87 schema:givenName Ahmad Taher
88 rdf:type schema:Person
89 N3feec6d0c5e04489b1f304b1d7eb7481 rdf:first Nedf21e31fb014545bff15bdcfcb7e513
90 rdf:rest rdf:nil
91 N4f9827e1e0e34875b71285af61700604 schema:name doi
92 schema:value 10.1007/978-3-319-11017-2_14
93 rdf:type schema:PropertyValue
94 N6cab571039184949afae00ba1b5ea3df schema:name dimensions_id
95 schema:value pub.1022157353
96 rdf:type schema:PropertyValue
97 N6f5d761615654411b31de36f45dd9573 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N8a0f8fa75c6a42f4ab8e01982b81f0b8 rdf:first sg:person.016502432127.03
100 rdf:rest Nca09c65595774d138af7d2ffd012921b
101 N903991e796d94e3aa0e7795392bd1ded rdf:first sg:person.012661166623.16
102 rdf:rest rdf:nil
103 N9c92acbf04e4420c8bd44c7aa2e9371b rdf:first N0154bb7a598b483f8c4bc22ea86621a9
104 rdf:rest N3feec6d0c5e04489b1f304b1d7eb7481
105 Nb5fa7cb4a56f44539bf31dd71f9efca2 schema:location Cham
106 schema:name Springer International Publishing
107 rdf:type schema:Organisation
108 Nca09c65595774d138af7d2ffd012921b rdf:first sg:person.014424414474.23
109 rdf:rest N903991e796d94e3aa0e7795392bd1ded
110 Nd72b366d85f249e59fbb75e32ff443c8 schema:name readcube_id
111 schema:value 699037240e8736a9355362e41a1810c15f74d110818ea5c59e4bd7b61a625cac
112 rdf:type schema:PropertyValue
113 Ne522251cc674474ea98fc0bad70d1636 schema:isbn 978-3-319-11016-5
114 978-3-319-11017-2
115 schema:name Computational Intelligence Applications in Modeling and Control
116 rdf:type schema:Book
117 Nedf21e31fb014545bff15bdcfcb7e513 schema:familyName Vaidyanathan
118 schema:givenName Sundarapandian
119 rdf:type schema:Person
120 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
121 schema:name Information and Computing Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
124 schema:name Artificial Intelligence and Image Processing
125 rdf:type schema:DefinedTerm
126 sg:person.012661166623.16 schema:affiliation https://www.grid.ac/institutes/grid.411838.7
127 schema:familyName Mtibaa
128 schema:givenName Abdellatif
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012661166623.16
130 rdf:type schema:Person
131 sg:person.014424414474.23 schema:affiliation https://www.grid.ac/institutes/grid.411838.7
132 schema:familyName Sakly
133 schema:givenName Anis
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424414474.23
135 rdf:type schema:Person
136 sg:person.016502432127.03 schema:affiliation https://www.grid.ac/institutes/grid.411838.7
137 schema:familyName Hamdaoui
138 schema:givenName Fayçal
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016502432127.03
140 rdf:type schema:Person
141 sg:pub.10.1007/978-3-319-00560-7_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024683226
142 https://doi.org/10.1007/978-3-319-00560-7_14
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/978-3-540-34690-6_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041966207
145 https://doi.org/10.1007/978-3-540-34690-6_1
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/978-3-540-72950-1_77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036909538
148 https://doi.org/10.1007/978-3-540-72950-1_77
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/978-3-642-16527-6_40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002285240
151 https://doi.org/10.1007/978-3-642-16527-6_40
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/978-3-642-34531-9_57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027650488
154 https://doi.org/10.1007/978-3-642-34531-9_57
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/978-3-642-35314-7_79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008506032
157 https://doi.org/10.1007/978-3-642-35314-7_79
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/978-3-642-38715-9_49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041509458
160 https://doi.org/10.1007/978-3-642-38715-9_49
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/978-3-642-39094-4_37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029810827
163 https://doi.org/10.1007/978-3-642-39094-4_37
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/978-3-642-40602-7_45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010120891
166 https://doi.org/10.1007/978-3-642-40602-7_45
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/bf00462870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030672184
169 https://doi.org/10.1007/bf00462870
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/bf00939380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004391225
172 https://doi.org/10.1007/bf00939380
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s11760-013-0546-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1000285001
175 https://doi.org/10.1007/s11760-013-0546-y
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s11771-009-0106-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001794850
178 https://doi.org/10.1007/s11771-009-0106-3
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1002/ima.22060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038373286
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.asoc.2007.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006312367
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.asoc.2012.03.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012223731
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.camwa.2008.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040336889
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.cmpb.2013.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002056879
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.cor.2011.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016299721
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.cviu.2007.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039705744
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.engappai.2009.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025294781
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.eswa.2012.04.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023367584
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.eswa.2013.10.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032690751
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.ins.2013.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052676304
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.ipl.2006.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021184235
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.measurement.2013.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038192298
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.patcog.2009.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042828416
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.patrec.2006.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042537623
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.patrec.2008.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035512284
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.patrec.2010.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020888772
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.swevo.2013.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038125660
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/s0022-5193(05)80686-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032564203
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/s0167-8140(03)00270-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045514594
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/s0167-8655(03)00166-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037494364
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/s0304-3975(00)00406-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016547244
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1061/(asce)0733-9496(2003)129:3(210) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057605981
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1109/3477.484436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061158013
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1109/41.538609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061169160
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1109/artcom.2009.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094842157
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1109/bibmw.2011.6112368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094386179
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1109/cbms.2012.6266308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094459645
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1109/cec.2012.6252919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094911126
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1109/iceas.2011.6147093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093459081
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1109/icnn.1995.488968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093669333
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1109/icnnsp.2003.1279340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094073054
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1109/iembs.2007.4353607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077517839
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1109/mhs.1995.494215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095205003
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1109/nasnit.2011.6111137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093872481
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1109/tgrs.2013.2260552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061612977
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1109/tsmc.1979.4310076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042805607
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1109/tsmcc.2010.2049649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798232
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1155/2013/927591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012794656
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1155/2014/690349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021352475
259 rdf:type schema:CreativeWork
260 https://doi.org/10.11591/telkomnika.v11i9.3273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063288059
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1166/jmihi.2014.1217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051487111
263 rdf:type schema:CreativeWork
264 https://doi.org/10.14429/dsj.60.356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067307211
265 rdf:type schema:CreativeWork
266 https://doi.org/10.3390/e13040841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016003010
267 rdf:type schema:CreativeWork
268 https://doi.org/10.4028/www.scientific.net/amr.214.693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048951358
269 rdf:type schema:CreativeWork
270 https://doi.org/10.5815/ijigsp.2013.01.07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073148688
271 rdf:type schema:CreativeWork
272 https://www.grid.ac/institutes/grid.411838.7 schema:alternateName University of Monastir
273 schema:name Industrial Systems Study and Renewable Energy (ESIER), National Engineering School of Monastir (ENIM), Electrical Department, University of Monastir, Monastir, Tunisia
274 Laboratory of EμE, Faculty of Sciences of Monastir (FSM), National Engineering School of Monastir (ENIM), Electrical Department, University of Monastir, Monastir, Tunisia
275 Laboratory of EμE, Faculty of Sciences of Monastir (FSM), University of Monastir, Monastir, Tunisia
276 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...