True Random Number Generators View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Mario Stipčević , Çetin Kaya Koç

ABSTRACT

Random numbers are needed in many areas: cryptography, Monte Carlo computation and simulation, industrial testing and labeling, hazard games, gambling, etc. Our assumption has been that random numbers cannot be computed; because digital computers operate deterministically, they cannot produce random numbers. Instead, random numbers are best obtained using physical (true) random number generators (TRNG), which operate by measuring a well-controlled and specially prepared physical process. Randomness of a TRNG can be precisely, scientifically characterized and measured. Especially valuable are the information-theoretic provable random number generators (RNGs), which, at the state of the art, seem to be possible only by exploiting randomness inherent to certain quantum systems. On the other hand, current industry standards dictate the use of RNGs based on free-running oscillators (FRO) whose randomness is derived from electronic noise present in logic circuits and which cannot be strictly proven as uniformly random, but offer easier technological realization. The FRO approach is currently used in 3rd- and 4th-generation FPGA and ASIC hardware, unsuitable for realization of quantum RNGs. In this chapter we compare weak and strong aspects of the two approaches. Finally, we discuss several examples where use of a true RNG is critical and show how it can significantly improve security of cryptographic systems, and discuss industrial and research challenges that prevent widespread use of TRNGs. More... »

PAGES

275-315

References to SciGraph publications

Book

TITLE

Open Problems in Mathematics and Computational Science

ISBN

978-3-319-10682-3
978-3-319-10683-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-10683-0_12

DOI

http://dx.doi.org/10.1007/978-3-319-10683-0_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007546457


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rudjer Boskovic Institute", 
          "id": "https://www.grid.ac/institutes/grid.4905.8", 
          "name": [
            "Centre of Excellence for Advanced Materials and Sensors, Rudjer Bo\u0161kovi\u0107 Institute, Zagreb, Croatia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stip\u010devi\u0107", 
        "givenName": "Mario", 
        "id": "sg:person.0774124320.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774124320.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "University of California Santa Barbara, Santa Barbara, CA\u00a093106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ko\u00e7", 
        "givenName": "\u00c7etin Kaya", 
        "id": "sg:person.011276776763.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011276776763.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1117/12.858233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006570833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.858233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006570833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rsa.20207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007352715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8191(90)90108-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008789186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8191(90)90108-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008789186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2961000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010252977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2760135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016513818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500340802553244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017536947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.051137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018928887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.051137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018928887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1809295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021813628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2008.227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027962919", 
          "https://doi.org/10.1038/nphoton.2008.227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1150518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028338171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(85)90670-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028574594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(85)90670-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028574594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2009.235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033120965", 
          "https://doi.org/10.1038/nphoton.2009.235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2009.235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033120965", 
          "https://doi.org/10.1038/nphoton.2009.235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039061342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039061342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(93)91122-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039621104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(93)91122-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039621104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0010-4655(99)00434-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041050015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176348543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042652157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.2513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044156414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.2513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044156414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4754(98)00078-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045037726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.75.042327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048005143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.75.042327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048005143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.21638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048939145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-71817-0_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050589844", 
          "https://doi.org/10.1007/978-0-387-71817-0_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-71817-0_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050589844", 
          "https://doi.org/10.1007/978-0-387-71817-0_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3578456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057978233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3735/3/8/303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058974538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.32.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060445024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.32.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060445024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.1889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060563403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.1889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060563403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.3382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.3382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.256484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061098983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.476316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061099776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lpt.2008.2002739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061369679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tc.2007.250627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061534437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1976.1055638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061647862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2009.2027483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061652422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0214038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062841827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129183195000642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062906566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129183196000235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062906597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.009351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065193347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.009351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065193347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.013029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065193819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.013029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065193819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.22.001645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065206356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.34.001144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065227093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.35.000312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065228168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.36.001020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065229912"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Random numbers are needed in many areas: cryptography, Monte Carlo computation and simulation, industrial testing and labeling, hazard games, gambling, etc. Our assumption has been that random numbers cannot be computed; because digital computers operate deterministically, they cannot produce random numbers. Instead, random numbers are best obtained using physical (true) random number generators (TRNG), which operate by measuring a well-controlled and specially prepared physical process. Randomness of a TRNG can be precisely, scientifically characterized and measured. Especially valuable are the information-theoretic provable random number generators (RNGs), which, at the state of the art, seem to be possible only by exploiting randomness inherent to certain quantum systems. On the other hand, current industry standards dictate the use of RNGs based on free-running oscillators (FRO) whose randomness is derived from electronic noise present in logic circuits and which cannot be strictly proven as uniformly random, but offer easier technological realization. The FRO approach is currently used in 3rd- and 4th-generation FPGA and ASIC hardware, unsuitable for realization of quantum RNGs. In this chapter we compare weak and strong aspects of the two approaches. Finally, we discuss several examples where use of a true RNG is critical and show how it can significantly improve security of cryptographic systems, and discuss industrial and research challenges that prevent widespread use of TRNGs.", 
    "editor": [
      {
        "familyName": "Ko\u00e7", 
        "givenName": "\u00c7etin Kaya", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-10683-0_12", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-10682-3", 
        "978-3-319-10683-0"
      ], 
      "name": "Open Problems in Mathematics and Computational Science", 
      "type": "Book"
    }, 
    "name": "True Random Number Generators", 
    "pagination": "275-315", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-10683-0_12"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "23f2307f393ca40bb25fe30cecec223ff583dfea83c99b8417ec7a740f686cc9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007546457"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-10683-0_12", 
      "https://app.dimensions.ai/details/publication/pub.1007546457"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T15:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000247.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-10683-0_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10683-0_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10683-0_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10683-0_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10683-0_12'


 

This table displays all metadata directly associated to this object as RDF triples.

201 TRIPLES      23 PREDICATES      68 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-10683-0_12 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author Na442d5eb45064d30a9ba9111413870d1
4 schema:citation sg:pub.10.1007/978-0-387-71817-0_4
5 sg:pub.10.1038/nphoton.2008.227
6 sg:pub.10.1038/nphoton.2009.235
7 https://doi.org/10.1002/jcc.21638
8 https://doi.org/10.1002/rsa.20207
9 https://doi.org/10.1016/0167-8191(90)90108-l
10 https://doi.org/10.1016/0370-2693(85)90670-7
11 https://doi.org/10.1016/0375-9601(93)91122-l
12 https://doi.org/10.1016/s0010-4655(99)00434-8
13 https://doi.org/10.1016/s0378-4754(98)00078-0
14 https://doi.org/10.1063/1.1150518
15 https://doi.org/10.1063/1.1809295
16 https://doi.org/10.1063/1.2760135
17 https://doi.org/10.1063/1.2961000
18 https://doi.org/10.1063/1.3578456
19 https://doi.org/10.1080/09500340802553244
20 https://doi.org/10.1088/0022-3735/3/8/303
21 https://doi.org/10.1103/physrev.32.110
22 https://doi.org/10.1103/physreva.75.042327
23 https://doi.org/10.1103/physrevb.46.1889
24 https://doi.org/10.1103/physreve.81.051137
25 https://doi.org/10.1103/physrevlett.69.3382
26 https://doi.org/10.1103/physrevlett.73.2513
27 https://doi.org/10.1103/physrevlett.85.441
28 https://doi.org/10.1109/18.256484
29 https://doi.org/10.1109/18.476316
30 https://doi.org/10.1109/lpt.2008.2002739
31 https://doi.org/10.1109/tc.2007.250627
32 https://doi.org/10.1109/tit.1976.1055638
33 https://doi.org/10.1109/tit.2009.2027483
34 https://doi.org/10.1117/12.858233
35 https://doi.org/10.1137/0214038
36 https://doi.org/10.1142/s0129183195000642
37 https://doi.org/10.1142/s0129183196000235
38 https://doi.org/10.1214/aos/1176348543
39 https://doi.org/10.1364/oe.18.009351
40 https://doi.org/10.1364/oe.18.013029
41 https://doi.org/10.1364/oe.22.001645
42 https://doi.org/10.1364/ol.34.001144
43 https://doi.org/10.1364/ol.35.000312
44 https://doi.org/10.1364/ol.36.001020
45 schema:datePublished 2014
46 schema:datePublishedReg 2014-01-01
47 schema:description Random numbers are needed in many areas: cryptography, Monte Carlo computation and simulation, industrial testing and labeling, hazard games, gambling, etc. Our assumption has been that random numbers cannot be computed; because digital computers operate deterministically, they cannot produce random numbers. Instead, random numbers are best obtained using physical (true) random number generators (TRNG), which operate by measuring a well-controlled and specially prepared physical process. Randomness of a TRNG can be precisely, scientifically characterized and measured. Especially valuable are the information-theoretic provable random number generators (RNGs), which, at the state of the art, seem to be possible only by exploiting randomness inherent to certain quantum systems. On the other hand, current industry standards dictate the use of RNGs based on free-running oscillators (FRO) whose randomness is derived from electronic noise present in logic circuits and which cannot be strictly proven as uniformly random, but offer easier technological realization. The FRO approach is currently used in 3rd- and 4th-generation FPGA and ASIC hardware, unsuitable for realization of quantum RNGs. In this chapter we compare weak and strong aspects of the two approaches. Finally, we discuss several examples where use of a true RNG is critical and show how it can significantly improve security of cryptographic systems, and discuss industrial and research challenges that prevent widespread use of TRNGs.
48 schema:editor Na8f3aec0a0d94d78a736abd8e8d344ca
49 schema:genre chapter
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf N4062e419aec24c8fa2d6c1fccbaa53dd
53 schema:name True Random Number Generators
54 schema:pagination 275-315
55 schema:productId N993ac20f535c494585da16b186dd3c0e
56 Nafefd6014e8d45319c76dd3c269561a3
57 Necd5dd6224964a1eac7d42ac4390d8a3
58 schema:publisher N7e997d4227464488949ca979eca63186
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007546457
60 https://doi.org/10.1007/978-3-319-10683-0_12
61 schema:sdDatePublished 2019-04-15T15:18
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N80d61236eeee4c599d04b79982cdd927
64 schema:url http://link.springer.com/10.1007/978-3-319-10683-0_12
65 sgo:license sg:explorer/license/
66 sgo:sdDataset chapters
67 rdf:type schema:Chapter
68 N4062e419aec24c8fa2d6c1fccbaa53dd schema:isbn 978-3-319-10682-3
69 978-3-319-10683-0
70 schema:name Open Problems in Mathematics and Computational Science
71 rdf:type schema:Book
72 N7e997d4227464488949ca979eca63186 schema:location Cham
73 schema:name Springer International Publishing
74 rdf:type schema:Organisation
75 N80d61236eeee4c599d04b79982cdd927 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N993ac20f535c494585da16b186dd3c0e schema:name doi
78 schema:value 10.1007/978-3-319-10683-0_12
79 rdf:type schema:PropertyValue
80 Na442d5eb45064d30a9ba9111413870d1 rdf:first sg:person.0774124320.24
81 rdf:rest Na469ec7bf87c4a47be701327f020b190
82 Na469ec7bf87c4a47be701327f020b190 rdf:first sg:person.011276776763.01
83 rdf:rest rdf:nil
84 Na8f3aec0a0d94d78a736abd8e8d344ca rdf:first Neb65ab194d7c4d2e997f91586cfb9e5b
85 rdf:rest rdf:nil
86 Nafefd6014e8d45319c76dd3c269561a3 schema:name dimensions_id
87 schema:value pub.1007546457
88 rdf:type schema:PropertyValue
89 Neb65ab194d7c4d2e997f91586cfb9e5b schema:familyName Koç
90 schema:givenName Çetin Kaya
91 rdf:type schema:Person
92 Necd5dd6224964a1eac7d42ac4390d8a3 schema:name readcube_id
93 schema:value 23f2307f393ca40bb25fe30cecec223ff583dfea83c99b8417ec7a740f686cc9
94 rdf:type schema:PropertyValue
95 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
96 schema:name Information and Computing Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
99 schema:name Data Format
100 rdf:type schema:DefinedTerm
101 sg:person.011276776763.01 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
102 schema:familyName Koç
103 schema:givenName Çetin Kaya
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011276776763.01
105 rdf:type schema:Person
106 sg:person.0774124320.24 schema:affiliation https://www.grid.ac/institutes/grid.4905.8
107 schema:familyName Stipčević
108 schema:givenName Mario
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774124320.24
110 rdf:type schema:Person
111 sg:pub.10.1007/978-0-387-71817-0_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050589844
112 https://doi.org/10.1007/978-0-387-71817-0_4
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/nphoton.2008.227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027962919
115 https://doi.org/10.1038/nphoton.2008.227
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/nphoton.2009.235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033120965
118 https://doi.org/10.1038/nphoton.2009.235
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/jcc.21638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048939145
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/rsa.20207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007352715
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0167-8191(90)90108-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1008789186
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0370-2693(85)90670-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028574594
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0375-9601(93)91122-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1039621104
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0010-4655(99)00434-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041050015
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0378-4754(98)00078-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045037726
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1063/1.1150518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028338171
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1063/1.1809295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021813628
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1063/1.2760135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016513818
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1063/1.2961000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010252977
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1063/1.3578456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057978233
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1080/09500340802553244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017536947
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1088/0022-3735/3/8/303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058974538
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrev.32.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060445024
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physreva.75.042327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048005143
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevb.46.1889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060563403
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physreve.81.051137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018928887
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevlett.69.3382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805791
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevlett.73.2513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044156414
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevlett.85.441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039061342
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/18.256484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061098983
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/18.476316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061099776
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/lpt.2008.2002739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061369679
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/tc.2007.250627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061534437
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/tit.1976.1055638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061647862
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/tit.2009.2027483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061652422
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1117/12.858233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006570833
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1137/0214038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841827
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1142/s0129183195000642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062906566
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1142/s0129183196000235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062906597
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1214/aos/1176348543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042652157
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1364/oe.18.009351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065193347
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1364/oe.18.013029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065193819
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1364/oe.22.001645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065206356
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1364/ol.34.001144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065227093
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1364/ol.35.000312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065228168
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1364/ol.36.001020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065229912
195 rdf:type schema:CreativeWork
196 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
197 schema:name University of California Santa Barbara, Santa Barbara, CA 93106, USA
198 rdf:type schema:Organization
199 https://www.grid.ac/institutes/grid.4905.8 schema:alternateName Rudjer Boskovic Institute
200 schema:name Centre of Excellence for Advanced Materials and Sensors, Rudjer Bošković Institute, Zagreb, Croatia
201 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...