gDLS: A Scalable Solution to the Generalized Pose and Scale Problem View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Chris Sweeney , Victor Fragoso , Tobias Höllerer , Matthew Turk

ABSTRACT

In this work, we present a scalable least-squares solution for computing a seven degree-of-freedom similarity transform. Our method utilizes the generalized camera model to compute relative rotation, translation, and scale from four or more 2D-3D correspondences. In particular, structure and motion estimations from monocular cameras lack scale without specific calibration. As such, our methods have applications in loop closure in visual odometry and registering multiple structure from motion reconstructions where scale must be recovered. We formulate the generalized pose and scale problem as a minimization of a least squares cost function and solve this minimization without iterations or initialization. Additionally, we obtain all minima of the cost function. The order of the polynomial system that we solve is independent of the number of points, allowing our overall approach to scale favorably. We evaluate our method experimentally on synthetic and real datasets and demonstrate that our methods produce higher accuracy similarity transform solutions than existing methods. More... »

PAGES

16-31

References to SciGraph publications

  • 2008. Automatic Generator of Minimal Problem Solvers in COMPUTER VISION – ECCV 2008
  • 2010. Location Recognition Using Prioritized Feature Matching in COMPUTER VISION – ECCV 2010
  • 2007-01. A Minimal Solution to the Generalised 3-Point Pose Problem in JOURNAL OF MATHEMATICAL IMAGING AND VISION
  • 2009-02. EPnP: An Accurate O(n) Solution to the PnP Problem in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2010. Exploiting Loops in the Graph of Trifocal Tensors for Calibrating a Network of Cameras in COMPUTER VISION – ECCV 2010
  • Book

    TITLE

    Computer Vision – ECCV 2014

    ISBN

    978-3-319-10592-5
    978-3-319-10593-2

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-10593-2_2

    DOI

    http://dx.doi.org/10.1007/978-3-319-10593-2_2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1009667978


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of California, Santa Barbara", 
              "id": "https://www.grid.ac/institutes/grid.133342.4", 
              "name": [
                "University of California, Santa Barbara, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sweeney", 
            "givenName": "Chris", 
            "id": "sg:person.011450324766.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011450324766.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, Santa Barbara", 
              "id": "https://www.grid.ac/institutes/grid.133342.4", 
              "name": [
                "University of California, Santa Barbara, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fragoso", 
            "givenName": "Victor", 
            "id": "sg:person.014153710175.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014153710175.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, Santa Barbara", 
              "id": "https://www.grid.ac/institutes/grid.133342.4", 
              "name": [
                "University of California, Santa Barbara, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "H\u00f6llerer", 
            "givenName": "Tobias", 
            "id": "sg:person.01345342204.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345342204.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, Santa Barbara", 
              "id": "https://www.grid.ac/institutes/grid.133342.4", 
              "name": [
                "University of California, Santa Barbara, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Turk", 
            "givenName": "Matthew", 
            "id": "sg:person.01163000404.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163000404.78"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1112/plms/s1-35.1.3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006013424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-88690-7_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009356890", 
              "https://doi.org/10.1007/978-3-540-88690-7_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-88690-7_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009356890", 
              "https://doi.org/10.1007/978-3-540-88690-7_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15552-9_57", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032520606", 
              "https://doi.org/10.1007/978-3-642-15552-9_57"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15552-9_57", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032520606", 
              "https://doi.org/10.1007/978-3-642-15552-9_57"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10851-006-0450-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032599192", 
              "https://doi.org/10.1007/s10851-006-0450-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10851-006-0450-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032599192", 
              "https://doi.org/10.1007/s10851-006-0450-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/358669.358692", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033921345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0278364906065387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036125924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0278364906065387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036125924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15552-9_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040882445", 
              "https://doi.org/10.1007/978-3-642-15552-9_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15552-9_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040882445", 
              "https://doi.org/10.1007/978-3-642-15552-9_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-008-0152-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049611633", 
              "https://doi.org/10.1007/s11263-008-0152-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.121791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061155634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.88573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061157176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2004.34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2007.1049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2011.230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061744112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2008.4587793", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093259408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2011.5995464", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093297100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ismar.2004.6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093335256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iros.2008.4650996", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094132352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2003.1211520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094136463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2013.184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094420674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2014.61", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094617283"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icra.2013.6631107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094952694"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2013.291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095127679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5244/c.22.55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099325590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5244/c.22.6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099325592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5244/c.21.22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099341514"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014", 
        "datePublishedReg": "2014-01-01", 
        "description": "In this work, we present a scalable least-squares solution for computing a seven degree-of-freedom similarity transform. Our method utilizes the generalized camera model to compute relative rotation, translation, and scale from four or more 2D-3D correspondences. In particular, structure and motion estimations from monocular cameras lack scale without specific calibration. As such, our methods have applications in loop closure in visual odometry and registering multiple structure from motion reconstructions where scale must be recovered. We formulate the generalized pose and scale problem as a minimization of a least squares cost function and solve this minimization without iterations or initialization. Additionally, we obtain all minima of the cost function. The order of the polynomial system that we solve is independent of the number of points, allowing our overall approach to scale favorably. We evaluate our method experimentally on synthetic and real datasets and demonstrate that our methods produce higher accuracy similarity transform solutions than existing methods.", 
        "editor": [
          {
            "familyName": "Fleet", 
            "givenName": "David", 
            "type": "Person"
          }, 
          {
            "familyName": "Pajdla", 
            "givenName": "Tomas", 
            "type": "Person"
          }, 
          {
            "familyName": "Schiele", 
            "givenName": "Bernt", 
            "type": "Person"
          }, 
          {
            "familyName": "Tuytelaars", 
            "givenName": "Tinne", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-10593-2_2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-319-10592-5", 
            "978-3-319-10593-2"
          ], 
          "name": "Computer Vision \u2013 ECCV 2014", 
          "type": "Book"
        }, 
        "name": "gDLS: A Scalable Solution to the Generalized Pose and Scale Problem", 
        "pagination": "16-31", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-10593-2_2"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2e0e653c309ca1dff7c91ecd4400cb7fe462610134458cef1fc8952c9d647e97"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1009667978"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-10593-2_2", 
          "https://app.dimensions.ai/details/publication/pub.1009667978"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T23:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000249.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-10593-2_2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10593-2_2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10593-2_2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10593-2_2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10593-2_2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    181 TRIPLES      23 PREDICATES      52 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-10593-2_2 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nb907a9a93252460890b4a6fe64ed95fe
    4 schema:citation sg:pub.10.1007/978-3-540-88690-7_23
    5 sg:pub.10.1007/978-3-642-15552-9_57
    6 sg:pub.10.1007/978-3-642-15552-9_7
    7 sg:pub.10.1007/s10851-006-0450-y
    8 sg:pub.10.1007/s11263-008-0152-6
    9 https://doi.org/10.1109/34.121791
    10 https://doi.org/10.1109/34.88573
    11 https://doi.org/10.1109/cvpr.2003.1211520
    12 https://doi.org/10.1109/cvpr.2008.4587793
    13 https://doi.org/10.1109/cvpr.2011.5995464
    14 https://doi.org/10.1109/cvpr.2014.61
    15 https://doi.org/10.1109/iccv.2013.184
    16 https://doi.org/10.1109/iccv.2013.291
    17 https://doi.org/10.1109/icra.2013.6631107
    18 https://doi.org/10.1109/iros.2008.4650996
    19 https://doi.org/10.1109/ismar.2004.6
    20 https://doi.org/10.1109/tpami.2004.34
    21 https://doi.org/10.1109/tpami.2007.1049
    22 https://doi.org/10.1109/tpami.2011.230
    23 https://doi.org/10.1112/plms/s1-35.1.3
    24 https://doi.org/10.1145/358669.358692
    25 https://doi.org/10.1177/0278364906065387
    26 https://doi.org/10.5244/c.21.22
    27 https://doi.org/10.5244/c.22.55
    28 https://doi.org/10.5244/c.22.6
    29 schema:datePublished 2014
    30 schema:datePublishedReg 2014-01-01
    31 schema:description In this work, we present a scalable least-squares solution for computing a seven degree-of-freedom similarity transform. Our method utilizes the generalized camera model to compute relative rotation, translation, and scale from four or more 2D-3D correspondences. In particular, structure and motion estimations from monocular cameras lack scale without specific calibration. As such, our methods have applications in loop closure in visual odometry and registering multiple structure from motion reconstructions where scale must be recovered. We formulate the generalized pose and scale problem as a minimization of a least squares cost function and solve this minimization without iterations or initialization. Additionally, we obtain all minima of the cost function. The order of the polynomial system that we solve is independent of the number of points, allowing our overall approach to scale favorably. We evaluate our method experimentally on synthetic and real datasets and demonstrate that our methods produce higher accuracy similarity transform solutions than existing methods.
    32 schema:editor Ndef9025babda4720b1ee96912453c4b4
    33 schema:genre chapter
    34 schema:inLanguage en
    35 schema:isAccessibleForFree true
    36 schema:isPartOf Nb7d7b863d7134b07b2afdafbed675381
    37 schema:name gDLS: A Scalable Solution to the Generalized Pose and Scale Problem
    38 schema:pagination 16-31
    39 schema:productId N09a894f40fc44c2280475a56658c71a3
    40 N1fc64ad2defb4eb98e7286960e711755
    41 N919ce6333a934f0881b379d1a4a76684
    42 schema:publisher N006e74d6cfc343a586b69147b6bb7890
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009667978
    44 https://doi.org/10.1007/978-3-319-10593-2_2
    45 schema:sdDatePublished 2019-04-15T23:50
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N48966ceabea045d8b992f13721d33cdf
    48 schema:url http://link.springer.com/10.1007/978-3-319-10593-2_2
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset chapters
    51 rdf:type schema:Chapter
    52 N006e74d6cfc343a586b69147b6bb7890 schema:location Cham
    53 schema:name Springer International Publishing
    54 rdf:type schema:Organisation
    55 N09a894f40fc44c2280475a56658c71a3 schema:name readcube_id
    56 schema:value 2e0e653c309ca1dff7c91ecd4400cb7fe462610134458cef1fc8952c9d647e97
    57 rdf:type schema:PropertyValue
    58 N1df1f5585ab544f7b9540d22ab20cc16 schema:familyName Fleet
    59 schema:givenName David
    60 rdf:type schema:Person
    61 N1fc64ad2defb4eb98e7286960e711755 schema:name dimensions_id
    62 schema:value pub.1009667978
    63 rdf:type schema:PropertyValue
    64 N48966ceabea045d8b992f13721d33cdf schema:name Springer Nature - SN SciGraph project
    65 rdf:type schema:Organization
    66 N4d74e688467f4189963560caeff19f58 rdf:first Nae7d5cc8f5f648b3b9fbee2f6c7a298f
    67 rdf:rest rdf:nil
    68 N5e2d71790ebc4022ba4b2a6d6ded1218 rdf:first sg:person.014153710175.50
    69 rdf:rest Nfa06b6d9eee044ceb599c155c58299de
    70 N836460d625284fc78fe41b1d6c1948a3 schema:familyName Pajdla
    71 schema:givenName Tomas
    72 rdf:type schema:Person
    73 N8ff893c7c40a41aaa6bedd562eb858b9 rdf:first sg:person.01163000404.78
    74 rdf:rest rdf:nil
    75 N919ce6333a934f0881b379d1a4a76684 schema:name doi
    76 schema:value 10.1007/978-3-319-10593-2_2
    77 rdf:type schema:PropertyValue
    78 Na5845721431d4e8e8d144804a5e4baa5 schema:familyName Schiele
    79 schema:givenName Bernt
    80 rdf:type schema:Person
    81 Nae7d5cc8f5f648b3b9fbee2f6c7a298f schema:familyName Tuytelaars
    82 schema:givenName Tinne
    83 rdf:type schema:Person
    84 Nb211c80bd81542c69bc135e63ad1f820 rdf:first Na5845721431d4e8e8d144804a5e4baa5
    85 rdf:rest N4d74e688467f4189963560caeff19f58
    86 Nb4cdb644bb0640e59f6282ca7d21aabf rdf:first N836460d625284fc78fe41b1d6c1948a3
    87 rdf:rest Nb211c80bd81542c69bc135e63ad1f820
    88 Nb7d7b863d7134b07b2afdafbed675381 schema:isbn 978-3-319-10592-5
    89 978-3-319-10593-2
    90 schema:name Computer Vision – ECCV 2014
    91 rdf:type schema:Book
    92 Nb907a9a93252460890b4a6fe64ed95fe rdf:first sg:person.011450324766.31
    93 rdf:rest N5e2d71790ebc4022ba4b2a6d6ded1218
    94 Ndef9025babda4720b1ee96912453c4b4 rdf:first N1df1f5585ab544f7b9540d22ab20cc16
    95 rdf:rest Nb4cdb644bb0640e59f6282ca7d21aabf
    96 Nfa06b6d9eee044ceb599c155c58299de rdf:first sg:person.01345342204.01
    97 rdf:rest N8ff893c7c40a41aaa6bedd562eb858b9
    98 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Information and Computing Sciences
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Artificial Intelligence and Image Processing
    103 rdf:type schema:DefinedTerm
    104 sg:person.011450324766.31 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
    105 schema:familyName Sweeney
    106 schema:givenName Chris
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011450324766.31
    108 rdf:type schema:Person
    109 sg:person.01163000404.78 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
    110 schema:familyName Turk
    111 schema:givenName Matthew
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163000404.78
    113 rdf:type schema:Person
    114 sg:person.01345342204.01 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
    115 schema:familyName Höllerer
    116 schema:givenName Tobias
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345342204.01
    118 rdf:type schema:Person
    119 sg:person.014153710175.50 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
    120 schema:familyName Fragoso
    121 schema:givenName Victor
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014153710175.50
    123 rdf:type schema:Person
    124 sg:pub.10.1007/978-3-540-88690-7_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009356890
    125 https://doi.org/10.1007/978-3-540-88690-7_23
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/978-3-642-15552-9_57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032520606
    128 https://doi.org/10.1007/978-3-642-15552-9_57
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/978-3-642-15552-9_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040882445
    131 https://doi.org/10.1007/978-3-642-15552-9_7
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s10851-006-0450-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1032599192
    134 https://doi.org/10.1007/s10851-006-0450-y
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/s11263-008-0152-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049611633
    137 https://doi.org/10.1007/s11263-008-0152-6
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1109/34.121791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061155634
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1109/34.88573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157176
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1109/cvpr.2003.1211520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094136463
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1109/cvpr.2008.4587793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093259408
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1109/cvpr.2011.5995464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093297100
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1109/cvpr.2014.61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094617283
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1109/iccv.2013.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094420674
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1109/iccv.2013.291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095127679
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1109/icra.2013.6631107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094952694
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1109/iros.2008.4650996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094132352
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1109/ismar.2004.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093335256
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1109/tpami.2004.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742719
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1109/tpami.2007.1049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743181
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1109/tpami.2011.230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744112
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1112/plms/s1-35.1.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006013424
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1145/358669.358692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033921345
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1177/0278364906065387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036125924
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.5244/c.21.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099341514
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.5244/c.22.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099325590
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.5244/c.22.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099325592
    178 rdf:type schema:CreativeWork
    179 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
    180 schema:name University of California, Santa Barbara, USA
    181 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...