Visualizing and Understanding Convolutional Networks View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Matthew D. Zeiler , Rob Fergus

ABSTRACT

Large Convolutional Network models have recently demonstrated impressive classification performance on the ImageNet benchmark Krizhevsky et al. [18]. However there is no clear understanding of why they perform so well, or how they might be improved. In this paper we explore both issues. We introduce a novel visualization technique that gives insight into the function of intermediate feature layers and the operation of the classifier. Used in a diagnostic role, these visualizations allow us to find model architectures that outperform Krizhevsky et al on the ImageNet classification benchmark. We also perform an ablation study to discover the performance contribution from different model layers. We show our ImageNet model generalizes well to other datasets: when the softmax classifier is retrained, it convincingly beats the current state-of-the-art results on Caltech-101 and Caltech-256 datasets. More... »

PAGES

818-833

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-10590-1_53

DOI

http://dx.doi.org/10.1007/978-3-319-10590-1_53

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032233097


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Dept. of Computer Science, New York University, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeiler", 
        "givenName": "Matthew D.", 
        "id": "sg:person.012065541527.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012065541527.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Dept. of Computer Science, New York University, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fergus", 
        "givenName": "Rob", 
        "id": "sg:person.011304642427.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011304642427.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1162/neco.2006.18.7.1527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004707137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1989.1.4.541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008345178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1390156.1390294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034603392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2006.18.8.1868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052237072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2006.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2009.5459469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093416695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2014.222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094012327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2011.5995347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094016389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2013.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094629530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2013.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094629530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2014.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094727707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2009.5206757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095180230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2011.6126474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095432752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2009.5206848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095689025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2011.6126554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095733216"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Large Convolutional Network models have recently demonstrated impressive classification performance on the ImageNet benchmark Krizhevsky et al. [18]. However there is no clear understanding of why they perform so well, or how they might be improved. In this paper we explore both issues. We introduce a novel visualization technique that gives insight into the function of intermediate feature layers and the operation of the classifier. Used in a diagnostic role, these visualizations allow us to find model architectures that outperform Krizhevsky et al on the ImageNet classification benchmark. We also perform an ablation study to discover the performance contribution from different model layers. We show our ImageNet model generalizes well to other datasets: when the softmax classifier is retrained, it convincingly beats the current state-of-the-art results on Caltech-101 and Caltech-256 datasets.", 
    "editor": [
      {
        "familyName": "Fleet", 
        "givenName": "David", 
        "type": "Person"
      }, 
      {
        "familyName": "Pajdla", 
        "givenName": "Tomas", 
        "type": "Person"
      }, 
      {
        "familyName": "Schiele", 
        "givenName": "Bernt", 
        "type": "Person"
      }, 
      {
        "familyName": "Tuytelaars", 
        "givenName": "Tinne", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-10590-1_53", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-10589-5", 
        "978-3-319-10590-1"
      ], 
      "name": "Computer Vision \u2013 ECCV 2014", 
      "type": "Book"
    }, 
    "name": "Visualizing and Understanding Convolutional Networks", 
    "pagination": "818-833", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-10590-1_53"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "998d8a3218ba1a5b2d72024c4ae9832b9e776dee889c0ca05b3490424ddbdaf7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032233097"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-10590-1_53", 
      "https://app.dimensions.ai/details/publication/pub.1032233097"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000554.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-10590-1_53"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10590-1_53'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10590-1_53'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10590-1_53'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10590-1_53'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-10590-1_53 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N5e3877ed0843459496b0c0a6594a0f5a
4 schema:citation https://doi.org/10.1109/cvpr.2009.5206757
5 https://doi.org/10.1109/cvpr.2009.5206848
6 https://doi.org/10.1109/cvpr.2011.5995347
7 https://doi.org/10.1109/cvpr.2013.91
8 https://doi.org/10.1109/cvpr.2014.222
9 https://doi.org/10.1109/cvpr.2014.81
10 https://doi.org/10.1109/iccv.2009.5459469
11 https://doi.org/10.1109/iccv.2011.6126474
12 https://doi.org/10.1109/iccv.2011.6126554
13 https://doi.org/10.1109/tpami.2006.79
14 https://doi.org/10.1145/1390156.1390294
15 https://doi.org/10.1162/neco.1989.1.4.541
16 https://doi.org/10.1162/neco.2006.18.7.1527
17 https://doi.org/10.1162/neco.2006.18.8.1868
18 schema:datePublished 2014
19 schema:datePublishedReg 2014-01-01
20 schema:description Large Convolutional Network models have recently demonstrated impressive classification performance on the ImageNet benchmark Krizhevsky et al. [18]. However there is no clear understanding of why they perform so well, or how they might be improved. In this paper we explore both issues. We introduce a novel visualization technique that gives insight into the function of intermediate feature layers and the operation of the classifier. Used in a diagnostic role, these visualizations allow us to find model architectures that outperform Krizhevsky et al on the ImageNet classification benchmark. We also perform an ablation study to discover the performance contribution from different model layers. We show our ImageNet model generalizes well to other datasets: when the softmax classifier is retrained, it convincingly beats the current state-of-the-art results on Caltech-101 and Caltech-256 datasets.
21 schema:editor N405775dccb78436aab496dd31c877cab
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N6473687b3b6c4b67ba2cf80c1ba93a97
26 schema:name Visualizing and Understanding Convolutional Networks
27 schema:pagination 818-833
28 schema:productId N2f7c1492a26b491aa9b9b179590cf288
29 N8ad2d0841ee14519894034d716c98be6
30 Ncb70d1cee067481097147d8e64e42c46
31 schema:publisher Nddc77d9b46174eacb7fcb61fa75ab0be
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032233097
33 https://doi.org/10.1007/978-3-319-10590-1_53
34 schema:sdDatePublished 2019-04-15T19:42
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nda6acf0196a94dd0ae0476ac2b02bf4f
37 schema:url http://link.springer.com/10.1007/978-3-319-10590-1_53
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N00eb1a8fcfb141aab031378598df9f46 schema:familyName Schiele
42 schema:givenName Bernt
43 rdf:type schema:Person
44 N2f7c1492a26b491aa9b9b179590cf288 schema:name doi
45 schema:value 10.1007/978-3-319-10590-1_53
46 rdf:type schema:PropertyValue
47 N405775dccb78436aab496dd31c877cab rdf:first Na0f7138b100d4d308e3e072c16f8acf3
48 rdf:rest Nb07d52c8bb8c4b649b1596e23b43fc7f
49 N4879875ebd494d729d08de0e91a48ee2 schema:familyName Pajdla
50 schema:givenName Tomas
51 rdf:type schema:Person
52 N5e3877ed0843459496b0c0a6594a0f5a rdf:first sg:person.012065541527.33
53 rdf:rest Na9cad6c9f4924f91b4f13f623479a3c0
54 N6473687b3b6c4b67ba2cf80c1ba93a97 schema:isbn 978-3-319-10589-5
55 978-3-319-10590-1
56 schema:name Computer Vision – ECCV 2014
57 rdf:type schema:Book
58 N7fc7a54495c84e1497a2568e0238a872 schema:familyName Tuytelaars
59 schema:givenName Tinne
60 rdf:type schema:Person
61 N8ad2d0841ee14519894034d716c98be6 schema:name readcube_id
62 schema:value 998d8a3218ba1a5b2d72024c4ae9832b9e776dee889c0ca05b3490424ddbdaf7
63 rdf:type schema:PropertyValue
64 Na0f7138b100d4d308e3e072c16f8acf3 schema:familyName Fleet
65 schema:givenName David
66 rdf:type schema:Person
67 Na230ac25d1f84b30a489056117fc327d rdf:first N7fc7a54495c84e1497a2568e0238a872
68 rdf:rest rdf:nil
69 Na9cad6c9f4924f91b4f13f623479a3c0 rdf:first sg:person.011304642427.80
70 rdf:rest rdf:nil
71 Nb07d52c8bb8c4b649b1596e23b43fc7f rdf:first N4879875ebd494d729d08de0e91a48ee2
72 rdf:rest Ndbcf83ee8b35427bb23c683879f580ea
73 Ncb70d1cee067481097147d8e64e42c46 schema:name dimensions_id
74 schema:value pub.1032233097
75 rdf:type schema:PropertyValue
76 Nda6acf0196a94dd0ae0476ac2b02bf4f schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Ndbcf83ee8b35427bb23c683879f580ea rdf:first N00eb1a8fcfb141aab031378598df9f46
79 rdf:rest Na230ac25d1f84b30a489056117fc327d
80 Nddc77d9b46174eacb7fcb61fa75ab0be schema:location Cham
81 schema:name Springer International Publishing
82 rdf:type schema:Organisation
83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
84 schema:name Mathematical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
87 schema:name Applied Mathematics
88 rdf:type schema:DefinedTerm
89 sg:person.011304642427.80 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
90 schema:familyName Fergus
91 schema:givenName Rob
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011304642427.80
93 rdf:type schema:Person
94 sg:person.012065541527.33 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
95 schema:familyName Zeiler
96 schema:givenName Matthew D.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012065541527.33
98 rdf:type schema:Person
99 https://doi.org/10.1109/cvpr.2009.5206757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095180230
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/cvpr.2009.5206848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095689025
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/cvpr.2011.5995347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094016389
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/cvpr.2013.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094629530
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/cvpr.2014.222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094012327
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/cvpr.2014.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094727707
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/iccv.2009.5459469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093416695
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/iccv.2011.6126474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095432752
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/iccv.2011.6126554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095733216
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/tpami.2006.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743121
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1145/1390156.1390294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034603392
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1162/neco.1989.1.4.541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008345178
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1162/neco.2006.18.7.1527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004707137
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1162/neco.2006.18.8.1868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052237072
126 rdf:type schema:CreativeWork
127 https://www.grid.ac/institutes/grid.137628.9 schema:alternateName New York University
128 schema:name Dept. of Computer Science, New York University, USA
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...