Visualizing and Understanding Convolutional Networks View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Matthew D. Zeiler , Rob Fergus

ABSTRACT

Large Convolutional Network models have recently demonstrated impressive classification performance on the ImageNet benchmark Krizhevsky et al. [18]. However there is no clear understanding of why they perform so well, or how they might be improved. In this paper we explore both issues. We introduce a novel visualization technique that gives insight into the function of intermediate feature layers and the operation of the classifier. Used in a diagnostic role, these visualizations allow us to find model architectures that outperform Krizhevsky et al on the ImageNet classification benchmark. We also perform an ablation study to discover the performance contribution from different model layers. We show our ImageNet model generalizes well to other datasets: when the softmax classifier is retrained, it convincingly beats the current state-of-the-art results on Caltech-101 and Caltech-256 datasets. More... »

PAGES

818-833

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-10590-1_53

DOI

http://dx.doi.org/10.1007/978-3-319-10590-1_53

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032233097


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Dept. of Computer Science, New York University, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeiler", 
        "givenName": "Matthew D.", 
        "id": "sg:person.012065541527.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012065541527.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Dept. of Computer Science, New York University, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fergus", 
        "givenName": "Rob", 
        "id": "sg:person.011304642427.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011304642427.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1162/neco.2006.18.7.1527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004707137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1989.1.4.541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008345178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1390156.1390294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034603392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2006.18.8.1868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052237072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2006.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2009.5459469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093416695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2014.222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094012327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2011.5995347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094016389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2013.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094629530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2013.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094629530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2014.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094727707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2009.5206757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095180230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2011.6126474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095432752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2009.5206848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095689025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2011.6126554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095733216"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Large Convolutional Network models have recently demonstrated impressive classification performance on the ImageNet benchmark Krizhevsky et al. [18]. However there is no clear understanding of why they perform so well, or how they might be improved. In this paper we explore both issues. We introduce a novel visualization technique that gives insight into the function of intermediate feature layers and the operation of the classifier. Used in a diagnostic role, these visualizations allow us to find model architectures that outperform Krizhevsky et al on the ImageNet classification benchmark. We also perform an ablation study to discover the performance contribution from different model layers. We show our ImageNet model generalizes well to other datasets: when the softmax classifier is retrained, it convincingly beats the current state-of-the-art results on Caltech-101 and Caltech-256 datasets.", 
    "editor": [
      {
        "familyName": "Fleet", 
        "givenName": "David", 
        "type": "Person"
      }, 
      {
        "familyName": "Pajdla", 
        "givenName": "Tomas", 
        "type": "Person"
      }, 
      {
        "familyName": "Schiele", 
        "givenName": "Bernt", 
        "type": "Person"
      }, 
      {
        "familyName": "Tuytelaars", 
        "givenName": "Tinne", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-10590-1_53", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-10589-5", 
        "978-3-319-10590-1"
      ], 
      "name": "Computer Vision \u2013 ECCV 2014", 
      "type": "Book"
    }, 
    "name": "Visualizing and Understanding Convolutional Networks", 
    "pagination": "818-833", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-10590-1_53"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "998d8a3218ba1a5b2d72024c4ae9832b9e776dee889c0ca05b3490424ddbdaf7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032233097"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-10590-1_53", 
      "https://app.dimensions.ai/details/publication/pub.1032233097"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000554.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-10590-1_53"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10590-1_53'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10590-1_53'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10590-1_53'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10590-1_53'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-10590-1_53 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N9e4d9a0debbc4df28ec5ed8c3a3df131
4 schema:citation https://doi.org/10.1109/cvpr.2009.5206757
5 https://doi.org/10.1109/cvpr.2009.5206848
6 https://doi.org/10.1109/cvpr.2011.5995347
7 https://doi.org/10.1109/cvpr.2013.91
8 https://doi.org/10.1109/cvpr.2014.222
9 https://doi.org/10.1109/cvpr.2014.81
10 https://doi.org/10.1109/iccv.2009.5459469
11 https://doi.org/10.1109/iccv.2011.6126474
12 https://doi.org/10.1109/iccv.2011.6126554
13 https://doi.org/10.1109/tpami.2006.79
14 https://doi.org/10.1145/1390156.1390294
15 https://doi.org/10.1162/neco.1989.1.4.541
16 https://doi.org/10.1162/neco.2006.18.7.1527
17 https://doi.org/10.1162/neco.2006.18.8.1868
18 schema:datePublished 2014
19 schema:datePublishedReg 2014-01-01
20 schema:description Large Convolutional Network models have recently demonstrated impressive classification performance on the ImageNet benchmark Krizhevsky et al. [18]. However there is no clear understanding of why they perform so well, or how they might be improved. In this paper we explore both issues. We introduce a novel visualization technique that gives insight into the function of intermediate feature layers and the operation of the classifier. Used in a diagnostic role, these visualizations allow us to find model architectures that outperform Krizhevsky et al on the ImageNet classification benchmark. We also perform an ablation study to discover the performance contribution from different model layers. We show our ImageNet model generalizes well to other datasets: when the softmax classifier is retrained, it convincingly beats the current state-of-the-art results on Caltech-101 and Caltech-256 datasets.
21 schema:editor N0b1e6395aa57442ba0f43fb79aca29aa
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf Nc83296a753104a669fbc6e8b4cc12b3a
26 schema:name Visualizing and Understanding Convolutional Networks
27 schema:pagination 818-833
28 schema:productId N01a74e854863462f9f0d3bf4ee22f965
29 N5a9e65f962c0459bade5a6cb46f5a841
30 Nb618859b75324ebdbb8b346c00cbff43
31 schema:publisher Nb116cca47aea4729bcfb0eb4f1afdfd0
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032233097
33 https://doi.org/10.1007/978-3-319-10590-1_53
34 schema:sdDatePublished 2019-04-15T19:42
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nc2fa9c66e3f844219352d7f21cb7eca0
37 schema:url http://link.springer.com/10.1007/978-3-319-10590-1_53
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N01a74e854863462f9f0d3bf4ee22f965 schema:name readcube_id
42 schema:value 998d8a3218ba1a5b2d72024c4ae9832b9e776dee889c0ca05b3490424ddbdaf7
43 rdf:type schema:PropertyValue
44 N0b1e6395aa57442ba0f43fb79aca29aa rdf:first Naa14fe9074714982b8a3c3647a718aef
45 rdf:rest N31346be2d4cc436992d9c8eda8d14ec6
46 N1bf10200c3d5442a9409171071fbf4e2 schema:familyName Schiele
47 schema:givenName Bernt
48 rdf:type schema:Person
49 N2daddeaa80024adfaaedae03a041df09 schema:familyName Pajdla
50 schema:givenName Tomas
51 rdf:type schema:Person
52 N31346be2d4cc436992d9c8eda8d14ec6 rdf:first N2daddeaa80024adfaaedae03a041df09
53 rdf:rest Nf8084351189f42b98cc557c55dd9a900
54 N5502590f4817481998965eafd5526b15 schema:familyName Tuytelaars
55 schema:givenName Tinne
56 rdf:type schema:Person
57 N595c8636362d4c32b8284ff1f6c25765 rdf:first N5502590f4817481998965eafd5526b15
58 rdf:rest rdf:nil
59 N5a9e65f962c0459bade5a6cb46f5a841 schema:name dimensions_id
60 schema:value pub.1032233097
61 rdf:type schema:PropertyValue
62 N9e4d9a0debbc4df28ec5ed8c3a3df131 rdf:first sg:person.012065541527.33
63 rdf:rest Ne4e2bdc5c0a8418789e1dd61a03fa45e
64 Naa14fe9074714982b8a3c3647a718aef schema:familyName Fleet
65 schema:givenName David
66 rdf:type schema:Person
67 Nb116cca47aea4729bcfb0eb4f1afdfd0 schema:location Cham
68 schema:name Springer International Publishing
69 rdf:type schema:Organisation
70 Nb618859b75324ebdbb8b346c00cbff43 schema:name doi
71 schema:value 10.1007/978-3-319-10590-1_53
72 rdf:type schema:PropertyValue
73 Nc2fa9c66e3f844219352d7f21cb7eca0 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Nc83296a753104a669fbc6e8b4cc12b3a schema:isbn 978-3-319-10589-5
76 978-3-319-10590-1
77 schema:name Computer Vision – ECCV 2014
78 rdf:type schema:Book
79 Ne4e2bdc5c0a8418789e1dd61a03fa45e rdf:first sg:person.011304642427.80
80 rdf:rest rdf:nil
81 Nf8084351189f42b98cc557c55dd9a900 rdf:first N1bf10200c3d5442a9409171071fbf4e2
82 rdf:rest N595c8636362d4c32b8284ff1f6c25765
83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
84 schema:name Mathematical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
87 schema:name Applied Mathematics
88 rdf:type schema:DefinedTerm
89 sg:person.011304642427.80 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
90 schema:familyName Fergus
91 schema:givenName Rob
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011304642427.80
93 rdf:type schema:Person
94 sg:person.012065541527.33 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
95 schema:familyName Zeiler
96 schema:givenName Matthew D.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012065541527.33
98 rdf:type schema:Person
99 https://doi.org/10.1109/cvpr.2009.5206757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095180230
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/cvpr.2009.5206848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095689025
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/cvpr.2011.5995347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094016389
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/cvpr.2013.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094629530
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/cvpr.2014.222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094012327
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/cvpr.2014.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094727707
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/iccv.2009.5459469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093416695
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/iccv.2011.6126474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095432752
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/iccv.2011.6126554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095733216
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/tpami.2006.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743121
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1145/1390156.1390294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034603392
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1162/neco.1989.1.4.541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008345178
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1162/neco.2006.18.7.1527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004707137
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1162/neco.2006.18.8.1868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052237072
126 rdf:type schema:CreativeWork
127 https://www.grid.ac/institutes/grid.137628.9 schema:alternateName New York University
128 schema:name Dept. of Computer Science, New York University, USA
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...