Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Kaiming He , Xiangyu Zhang , Shaoqing Ren , Jian Sun

ABSTRACT

Existing deep convolutional neural networks (CNNs) require a fixed-size (e.g. 224×224) input image. This requirement is “artificial” and may hurt the recognition accuracy for the images or sub-images of an arbitrary size/scale. In this work, we equip the networks with a more principled pooling strategy, “spatial pyramid pooling”, to eliminate the above requirement. The new network structure, called SPP-net, can generate a fixed-length representation regardless of image size/scale. By removing the fixed-size limitation, we can improve all CNN-based image classification methods in general. Our SPP-net achieves state-of-the-art accuracy on the datasets of ImageNet 2012, Pascal VOC 2007, and Caltech101. The power of SPP-net is more significant in object detection. Using SPP-net, we compute the feature maps from the entire image only once, and then pool features in arbitrary regions (sub-images) to generate fixed-length representations for training the detectors. This method avoids repeatedly computing the convolutional features. In processing test images, our method computes convolutional features 30-170× faster than the recent leading method R-CNN (and 24-64× faster overall), while achieving better or comparable accuracy on Pascal VOC 2007. More... »

PAGES

346-361

References to SciGraph publications

  • 2014. Multi-scale Orderless Pooling of Deep Convolutional Activation Features in COMPUTER VISION – ECCV 2014
  • 2008. Kernel Codebooks for Scene Categorization in COMPUTER VISION – ECCV 2008
  • 2010. Improving the Fisher Kernel for Large-Scale Image Classification in COMPUTER VISION – ECCV 2010
  • Book

    TITLE

    Computer Vision – ECCV 2014

    ISBN

    978-3-319-10577-2
    978-3-319-10578-9

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-10578-9_23

    DOI

    http://dx.doi.org/10.1007/978-3-319-10578-9_23

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1030406568


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Microsoft Research, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "He", 
            "givenName": "Kaiming", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xi'an Jiaotong University", 
              "id": "https://www.grid.ac/institutes/grid.43169.39", 
              "name": [
                "Xi\u2019an Jiaotong University, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Xiangyu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "University of Science and Technology, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ren", 
            "givenName": "Shaoqing", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Microsoft Research, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sun", 
            "givenName": "Jian", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.cviu.2005.09.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004784969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.1989.1.4.541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008345178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-10584-0_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032984348", 
              "https://doi.org/10.1007/978-3-319-10584-0_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15561-1_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045344996", 
              "https://doi.org/10.1007/978-3-642-15561-1_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15561-1_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045344996", 
              "https://doi.org/10.1007/978-3-642-15561-1_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-88690-7_52", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048787563", 
              "https://doi.org/10.1007/978-3-540-88690-7_52"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-88690-7_52", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048787563", 
              "https://doi.org/10.1007/978-3-540-88690-7_52"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2014.220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052782426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2014.212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093810850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2013.10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093883984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2005.177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093997066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2014.222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094012327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2006.68", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094512911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2014.81", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094727707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2003.1238663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094978467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2009.5206757", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095180230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2010.5540018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095506116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2005.239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095611654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2009.5206848", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095689025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5244/c.25.76", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099341617"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014", 
        "datePublishedReg": "2014-01-01", 
        "description": "Existing deep convolutional neural networks (CNNs) require a fixed-size (e.g.\u00a0224\u00d7224) input image. This requirement is \u201cartificial\u201d and may hurt the recognition accuracy for the images or sub-images of an arbitrary size/scale. In this work, we equip the networks with a more principled pooling strategy, \u201cspatial pyramid pooling\u201d, to eliminate the above requirement. The new network structure, called SPP-net, can generate a fixed-length representation regardless of image size/scale. By removing the fixed-size limitation, we can improve all CNN-based image classification methods in general. Our SPP-net achieves state-of-the-art accuracy on the datasets of ImageNet 2012, Pascal VOC 2007, and Caltech101. The power of SPP-net is more significant in object detection. Using SPP-net, we compute the feature maps from the entire image only once, and then pool features in arbitrary regions (sub-images) to generate fixed-length representations for training the detectors. This method avoids repeatedly computing the convolutional features. In processing test images, our method computes convolutional features 30-170\u00d7 faster than the recent leading method R-CNN (and 24-64\u00d7 faster overall), while achieving better or comparable accuracy on Pascal VOC 2007.", 
        "editor": [
          {
            "familyName": "Fleet", 
            "givenName": "David", 
            "type": "Person"
          }, 
          {
            "familyName": "Pajdla", 
            "givenName": "Tomas", 
            "type": "Person"
          }, 
          {
            "familyName": "Schiele", 
            "givenName": "Bernt", 
            "type": "Person"
          }, 
          {
            "familyName": "Tuytelaars", 
            "givenName": "Tinne", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-10578-9_23", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-319-10577-2", 
            "978-3-319-10578-9"
          ], 
          "name": "Computer Vision \u2013 ECCV 2014", 
          "type": "Book"
        }, 
        "name": "Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition", 
        "pagination": "346-361", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-10578-9_23"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "90da7e6dfbf6e95b050c1e78167db4bdfa484ebf23fd9f26609cc1bb2360ee52"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1030406568"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-10578-9_23", 
          "https://app.dimensions.ai/details/publication/pub.1030406568"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T17:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000262.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-10578-9_23"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10578-9_23'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10578-9_23'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10578-9_23'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10578-9_23'


     

    This table displays all metadata directly associated to this object as RDF triples.

    160 TRIPLES      23 PREDICATES      45 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-10578-9_23 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N5318f19ab18b477e83c1883bcbe452e9
    4 schema:citation sg:pub.10.1007/978-3-319-10584-0_26
    5 sg:pub.10.1007/978-3-540-88690-7_52
    6 sg:pub.10.1007/978-3-642-15561-1_11
    7 https://doi.org/10.1016/j.cviu.2005.09.012
    8 https://doi.org/10.1109/cvpr.2005.177
    9 https://doi.org/10.1109/cvpr.2006.68
    10 https://doi.org/10.1109/cvpr.2009.5206757
    11 https://doi.org/10.1109/cvpr.2009.5206848
    12 https://doi.org/10.1109/cvpr.2010.5540018
    13 https://doi.org/10.1109/cvpr.2014.212
    14 https://doi.org/10.1109/cvpr.2014.220
    15 https://doi.org/10.1109/cvpr.2014.222
    16 https://doi.org/10.1109/cvpr.2014.81
    17 https://doi.org/10.1109/iccv.2003.1238663
    18 https://doi.org/10.1109/iccv.2005.239
    19 https://doi.org/10.1109/iccv.2013.10
    20 https://doi.org/10.1162/neco.1989.1.4.541
    21 https://doi.org/10.5244/c.25.76
    22 schema:datePublished 2014
    23 schema:datePublishedReg 2014-01-01
    24 schema:description Existing deep convolutional neural networks (CNNs) require a fixed-size (e.g. 224×224) input image. This requirement is “artificial” and may hurt the recognition accuracy for the images or sub-images of an arbitrary size/scale. In this work, we equip the networks with a more principled pooling strategy, “spatial pyramid pooling”, to eliminate the above requirement. The new network structure, called SPP-net, can generate a fixed-length representation regardless of image size/scale. By removing the fixed-size limitation, we can improve all CNN-based image classification methods in general. Our SPP-net achieves state-of-the-art accuracy on the datasets of ImageNet 2012, Pascal VOC 2007, and Caltech101. The power of SPP-net is more significant in object detection. Using SPP-net, we compute the feature maps from the entire image only once, and then pool features in arbitrary regions (sub-images) to generate fixed-length representations for training the detectors. This method avoids repeatedly computing the convolutional features. In processing test images, our method computes convolutional features 30-170× faster than the recent leading method R-CNN (and 24-64× faster overall), while achieving better or comparable accuracy on Pascal VOC 2007.
    25 schema:editor Nd156d81202624256b9ce8cf2f8e8aad7
    26 schema:genre chapter
    27 schema:inLanguage en
    28 schema:isAccessibleForFree true
    29 schema:isPartOf Nbed554c8ba3a4e27bfa8a8fcba3a66b2
    30 schema:name Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
    31 schema:pagination 346-361
    32 schema:productId N141e59293aca4429a8a723191c9ae107
    33 Naf619db6752b4a37b6c5746b66b812b2
    34 Nd5c2dc1c28f24ab3ac2e0fff302e2327
    35 schema:publisher N4fa5bab489b84e55a47f70537ccba995
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030406568
    37 https://doi.org/10.1007/978-3-319-10578-9_23
    38 schema:sdDatePublished 2019-04-15T17:14
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher Ned0e371b3f834e8fb6c61d0b046067cf
    41 schema:url http://link.springer.com/10.1007/978-3-319-10578-9_23
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset chapters
    44 rdf:type schema:Chapter
    45 N0684bc4516b3440db64eda29dbb25db6 schema:familyName Fleet
    46 schema:givenName David
    47 rdf:type schema:Person
    48 N12c03d06b9d34ea396278ce0758644e0 schema:familyName Schiele
    49 schema:givenName Bernt
    50 rdf:type schema:Person
    51 N141e59293aca4429a8a723191c9ae107 schema:name readcube_id
    52 schema:value 90da7e6dfbf6e95b050c1e78167db4bdfa484ebf23fd9f26609cc1bb2360ee52
    53 rdf:type schema:PropertyValue
    54 N1f7a8193e8694c5da89feb5654593a02 schema:name Microsoft Research, China
    55 rdf:type schema:Organization
    56 N1fa461c3f4824b3084ff70b0cb45b4ff schema:affiliation N848ec9c7a5b0407b8a61eb28832f26d6
    57 schema:familyName Ren
    58 schema:givenName Shaoqing
    59 rdf:type schema:Person
    60 N365e79c5da4b4402acff0b14c7464039 schema:affiliation N1f7a8193e8694c5da89feb5654593a02
    61 schema:familyName Sun
    62 schema:givenName Jian
    63 rdf:type schema:Person
    64 N4fa5bab489b84e55a47f70537ccba995 schema:location Cham
    65 schema:name Springer International Publishing
    66 rdf:type schema:Organisation
    67 N5113d257f6644acbbf485b3d670fd0a8 schema:affiliation N89d582f4254b40b0847f5838b53723e5
    68 schema:familyName He
    69 schema:givenName Kaiming
    70 rdf:type schema:Person
    71 N5318f19ab18b477e83c1883bcbe452e9 rdf:first N5113d257f6644acbbf485b3d670fd0a8
    72 rdf:rest N8a44404113bf4787857de22696f386a7
    73 N55979158efd142bcbc090b109779dd43 rdf:first N365e79c5da4b4402acff0b14c7464039
    74 rdf:rest rdf:nil
    75 N5faaa28c0b994dd5a9165539f127cd26 rdf:first N12c03d06b9d34ea396278ce0758644e0
    76 rdf:rest Na8fe8695d5814a2695331d8a422804f9
    77 N66412ef61cdd4f07986471ec415c362b rdf:first N1fa461c3f4824b3084ff70b0cb45b4ff
    78 rdf:rest N55979158efd142bcbc090b109779dd43
    79 N848ec9c7a5b0407b8a61eb28832f26d6 schema:name University of Science and Technology, China
    80 rdf:type schema:Organization
    81 N89d582f4254b40b0847f5838b53723e5 schema:name Microsoft Research, China
    82 rdf:type schema:Organization
    83 N8a44404113bf4787857de22696f386a7 rdf:first Ncc21c9dbd00841fab86ec360febc56c0
    84 rdf:rest N66412ef61cdd4f07986471ec415c362b
    85 N8f82b62255c34555aefc396b1726fa1e rdf:first Ndb8c21aaa4164e93aae3ad58e5fb6cfd
    86 rdf:rest N5faaa28c0b994dd5a9165539f127cd26
    87 Na8fe8695d5814a2695331d8a422804f9 rdf:first Nacb908df4dbf42c0bc201f5ec8e306cb
    88 rdf:rest rdf:nil
    89 Nacb908df4dbf42c0bc201f5ec8e306cb schema:familyName Tuytelaars
    90 schema:givenName Tinne
    91 rdf:type schema:Person
    92 Naf619db6752b4a37b6c5746b66b812b2 schema:name dimensions_id
    93 schema:value pub.1030406568
    94 rdf:type schema:PropertyValue
    95 Nbed554c8ba3a4e27bfa8a8fcba3a66b2 schema:isbn 978-3-319-10577-2
    96 978-3-319-10578-9
    97 schema:name Computer Vision – ECCV 2014
    98 rdf:type schema:Book
    99 Ncc21c9dbd00841fab86ec360febc56c0 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
    100 schema:familyName Zhang
    101 schema:givenName Xiangyu
    102 rdf:type schema:Person
    103 Nd156d81202624256b9ce8cf2f8e8aad7 rdf:first N0684bc4516b3440db64eda29dbb25db6
    104 rdf:rest N8f82b62255c34555aefc396b1726fa1e
    105 Nd5c2dc1c28f24ab3ac2e0fff302e2327 schema:name doi
    106 schema:value 10.1007/978-3-319-10578-9_23
    107 rdf:type schema:PropertyValue
    108 Ndb8c21aaa4164e93aae3ad58e5fb6cfd schema:familyName Pajdla
    109 schema:givenName Tomas
    110 rdf:type schema:Person
    111 Ned0e371b3f834e8fb6c61d0b046067cf schema:name Springer Nature - SN SciGraph project
    112 rdf:type schema:Organization
    113 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Information and Computing Sciences
    115 rdf:type schema:DefinedTerm
    116 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Artificial Intelligence and Image Processing
    118 rdf:type schema:DefinedTerm
    119 sg:pub.10.1007/978-3-319-10584-0_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032984348
    120 https://doi.org/10.1007/978-3-319-10584-0_26
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/978-3-540-88690-7_52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048787563
    123 https://doi.org/10.1007/978-3-540-88690-7_52
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/978-3-642-15561-1_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045344996
    126 https://doi.org/10.1007/978-3-642-15561-1_11
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.cviu.2005.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004784969
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1109/cvpr.2005.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093997066
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1109/cvpr.2006.68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094512911
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1109/cvpr.2009.5206757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095180230
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1109/cvpr.2009.5206848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095689025
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1109/cvpr.2010.5540018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095506116
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1109/cvpr.2014.212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093810850
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1109/cvpr.2014.220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052782426
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1109/cvpr.2014.222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094012327
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/cvpr.2014.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094727707
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1109/iccv.2003.1238663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094978467
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1109/iccv.2005.239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095611654
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1109/iccv.2013.10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093883984
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1162/neco.1989.1.4.541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008345178
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.5244/c.25.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099341617
    157 rdf:type schema:CreativeWork
    158 https://www.grid.ac/institutes/grid.43169.39 schema:alternateName Xi'an Jiaotong University
    159 schema:name Xi’an Jiaotong University, China
    160 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...