The Quantum Logic Formalism View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

François David

ABSTRACT

The quantum logic formalism is another interesting, albeit more abstract, way to formulate quantum physics. The bonus of this approach is that one does not need to start from the assumption that the set of observables of a physical system is embodied with the algebraic structure of an associative unital algebra. As discussed in the previous section, this assumption that one can “add” and “multiply” observables is already a highly non trivial one. This algebraic structure is natural in classical physics since the observables form a commutative Poisson algebra, addition and multiplication of observables reflect the action of adding and multiplying results of different measurements (it is the Poisson bracket structure that is non trivial). More... »

PAGES

77-104

Book

TITLE

The Formalisms of Quantum Mechanics

ISBN

978-3-319-10538-3
978-3-319-10539-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-10539-0_4

DOI

http://dx.doi.org/10.1007/978-3-319-10539-0_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024530076


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "L'Institut de physique th\u00e9orique", 
          "id": "https://www.grid.ac/institutes/grid.457338.e", 
          "name": [
            "Institut de Physique Th\u00e9orique, CEA Saclay, Gif-sur-Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "David", 
        "givenName": "Fran\u00e7ois", 
        "id": "sg:person.016421035357.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016421035357.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00927879508825218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020070712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1512/iumj.1957.6.56050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067510263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1968621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069674038"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "The quantum logic formalism is another interesting, albeit more abstract, way to formulate quantum physics. The bonus of this approach is that one does not need to start from the assumption that the set of observables of a physical system is embodied with the algebraic structure of an associative unital algebra. As discussed in the previous section, this assumption that one can \u201cadd\u201d and \u201cmultiply\u201d observables is already a highly non trivial one. This algebraic structure is natural in classical physics since the observables form a commutative Poisson algebra, addition and multiplication of observables reflect the action of adding and multiplying results of different measurements (it is the Poisson bracket structure that is non trivial).", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-10539-0_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-10538-3", 
        "978-3-319-10539-0"
      ], 
      "name": "The Formalisms of Quantum Mechanics", 
      "type": "Book"
    }, 
    "name": "The Quantum Logic Formalism", 
    "pagination": "77-104", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-10539-0_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "74dccf793046355863369831e0b4f3fabf8a950d223d43e97df91048eb2632e0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024530076"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-10539-0_4", 
      "https://app.dimensions.ai/details/publication/pub.1024530076"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000258.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-10539-0_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10539-0_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10539-0_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10539-0_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10539-0_4'


 

This table displays all metadata directly associated to this object as RDF triples.

68 TRIPLES      22 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-10539-0_4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N858d729f908b4022a5fb7ea5022383a3
4 schema:citation https://doi.org/10.1080/00927879508825218
5 https://doi.org/10.1512/iumj.1957.6.56050
6 https://doi.org/10.2307/1968621
7 schema:datePublished 2015
8 schema:datePublishedReg 2015-01-01
9 schema:description The quantum logic formalism is another interesting, albeit more abstract, way to formulate quantum physics. The bonus of this approach is that one does not need to start from the assumption that the set of observables of a physical system is embodied with the algebraic structure of an associative unital algebra. As discussed in the previous section, this assumption that one can “add” and “multiply” observables is already a highly non trivial one. This algebraic structure is natural in classical physics since the observables form a commutative Poisson algebra, addition and multiplication of observables reflect the action of adding and multiplying results of different measurements (it is the Poisson bracket structure that is non trivial).
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf Ndbc04c89020d498dab579f92204e9f19
14 schema:name The Quantum Logic Formalism
15 schema:pagination 77-104
16 schema:productId N335035efdafa457da9f18323168300f5
17 N6237251e6b904e4ebe79c71a6e495e80
18 Nd4e511d1fb7541a3b0428ca931ff1d15
19 schema:publisher N94d78d5930ed4e26a9c0007989a336cf
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024530076
21 https://doi.org/10.1007/978-3-319-10539-0_4
22 schema:sdDatePublished 2019-04-15T17:13
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N9d2e6849e39942068e20722f876f0dec
25 schema:url http://link.springer.com/10.1007/978-3-319-10539-0_4
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N335035efdafa457da9f18323168300f5 schema:name doi
30 schema:value 10.1007/978-3-319-10539-0_4
31 rdf:type schema:PropertyValue
32 N6237251e6b904e4ebe79c71a6e495e80 schema:name dimensions_id
33 schema:value pub.1024530076
34 rdf:type schema:PropertyValue
35 N858d729f908b4022a5fb7ea5022383a3 rdf:first sg:person.016421035357.69
36 rdf:rest rdf:nil
37 N94d78d5930ed4e26a9c0007989a336cf schema:location Cham
38 schema:name Springer International Publishing
39 rdf:type schema:Organisation
40 N9d2e6849e39942068e20722f876f0dec schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 Nd4e511d1fb7541a3b0428ca931ff1d15 schema:name readcube_id
43 schema:value 74dccf793046355863369831e0b4f3fabf8a950d223d43e97df91048eb2632e0
44 rdf:type schema:PropertyValue
45 Ndbc04c89020d498dab579f92204e9f19 schema:isbn 978-3-319-10538-3
46 978-3-319-10539-0
47 schema:name The Formalisms of Quantum Mechanics
48 rdf:type schema:Book
49 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
50 schema:name Mathematical Sciences
51 rdf:type schema:DefinedTerm
52 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
53 schema:name Pure Mathematics
54 rdf:type schema:DefinedTerm
55 sg:person.016421035357.69 schema:affiliation https://www.grid.ac/institutes/grid.457338.e
56 schema:familyName David
57 schema:givenName François
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016421035357.69
59 rdf:type schema:Person
60 https://doi.org/10.1080/00927879508825218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020070712
61 rdf:type schema:CreativeWork
62 https://doi.org/10.1512/iumj.1957.6.56050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067510263
63 rdf:type schema:CreativeWork
64 https://doi.org/10.2307/1968621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674038
65 rdf:type schema:CreativeWork
66 https://www.grid.ac/institutes/grid.457338.e schema:alternateName L'Institut de physique théorique
67 schema:name Institut de Physique Théorique, CEA Saclay, Gif-sur-Yvette, France
68 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...