The Algebraic Quantum Formalism View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

François David

ABSTRACT

The physical observables of a quantum system are represented by the symmetric (self-adjoint) operators on the Hilbert space of pure states of the system (see Sects. 2. 3. 1 and in 2.3.3). They thus generate (by addition and multiplication) the set of all (not necessary symmetric) operators on the Hilbert space. This set forms an associative but non-commutative complex algebra of operators. More... »

PAGES

47-76

References to SciGraph publications

Book

TITLE

The Formalisms of Quantum Mechanics

ISBN

978-3-319-10538-3
978-3-319-10539-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-10539-0_3

DOI

http://dx.doi.org/10.1007/978-3-319-10539-0_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020164286


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "L'Institut de physique th\u00e9orique", 
          "id": "https://www.grid.ac/institutes/grid.457338.e", 
          "name": [
            "Institut de Physique Th\u00e9orique, CEA Saclay, Gif-sur-Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "David", 
        "givenName": "Fran\u00e7ois", 
        "id": "sg:person.016421035357.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016421035357.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-61993-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000334678", 
          "https://doi.org/10.1007/978-3-642-61993-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61993-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000334678", 
          "https://doi.org/10.1007/978-3-642-61993-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9904-1947-08742-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015043335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02591126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034029640", 
          "https://doi.org/10.1007/bf02591126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61458-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039380737", 
          "https://doi.org/10.1007/978-3-642-61458-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61458-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039380737", 
          "https://doi.org/10.1007/978-3-642-61458-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.115.485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043456385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.115.485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043456385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1704187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057774129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0370-1301/62/1/303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059091765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1969387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069674771"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "The physical observables of a quantum system are represented by the symmetric (self-adjoint) operators on the Hilbert space of pure states of the system (see Sects. 2. 3. 1 and in 2.3.3). They thus generate (by addition and multiplication) the set of all (not necessary symmetric) operators on the Hilbert space. This set forms an associative but non-commutative complex algebra of operators.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-10539-0_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-10538-3", 
        "978-3-319-10539-0"
      ], 
      "name": "The Formalisms of Quantum Mechanics", 
      "type": "Book"
    }, 
    "name": "The Algebraic Quantum Formalism", 
    "pagination": "47-76", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-10539-0_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "60136efb937a944206ed8b4980cd1695545e3e230570ddaf017f172c81ed0bfb"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020164286"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-10539-0_3", 
      "https://app.dimensions.ai/details/publication/pub.1020164286"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000255.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-10539-0_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10539-0_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10539-0_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10539-0_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10539-0_3'


 

This table displays all metadata directly associated to this object as RDF triples.

86 TRIPLES      22 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-10539-0_3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N048113cc1d6e4ce381d935635ab1ff67
4 schema:citation sg:pub.10.1007/978-3-642-61458-3
5 sg:pub.10.1007/978-3-642-61993-9
6 sg:pub.10.1007/bf02591126
7 https://doi.org/10.1063/1.1704187
8 https://doi.org/10.1088/0370-1301/62/1/303
9 https://doi.org/10.1090/s0002-9904-1947-08742-5
10 https://doi.org/10.1103/physrev.115.485
11 https://doi.org/10.2307/1969387
12 schema:datePublished 2015
13 schema:datePublishedReg 2015-01-01
14 schema:description The physical observables of a quantum system are represented by the symmetric (self-adjoint) operators on the Hilbert space of pure states of the system (see Sects. 2. 3. 1 and in 2.3.3). They thus generate (by addition and multiplication) the set of all (not necessary symmetric) operators on the Hilbert space. This set forms an associative but non-commutative complex algebra of operators.
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf Nd82d9c61409a4b95b694d13697bcaa51
19 schema:name The Algebraic Quantum Formalism
20 schema:pagination 47-76
21 schema:productId N7888d9a4fd464bf0a7f6bfdf414b94fc
22 N8e432197c5db4d309666829ccba4c7b8
23 Nb95c738de13a42398044fd83ac141a9c
24 schema:publisher N4a53f54e880b4ba6883bf4bb2c8784a9
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020164286
26 https://doi.org/10.1007/978-3-319-10539-0_3
27 schema:sdDatePublished 2019-04-15T23:51
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher Nb08954d41d904d9bb03a948e9ecd27ed
30 schema:url http://link.springer.com/10.1007/978-3-319-10539-0_3
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N048113cc1d6e4ce381d935635ab1ff67 rdf:first sg:person.016421035357.69
35 rdf:rest rdf:nil
36 N4a53f54e880b4ba6883bf4bb2c8784a9 schema:location Cham
37 schema:name Springer International Publishing
38 rdf:type schema:Organisation
39 N7888d9a4fd464bf0a7f6bfdf414b94fc schema:name readcube_id
40 schema:value 60136efb937a944206ed8b4980cd1695545e3e230570ddaf017f172c81ed0bfb
41 rdf:type schema:PropertyValue
42 N8e432197c5db4d309666829ccba4c7b8 schema:name dimensions_id
43 schema:value pub.1020164286
44 rdf:type schema:PropertyValue
45 Nb08954d41d904d9bb03a948e9ecd27ed schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 Nb95c738de13a42398044fd83ac141a9c schema:name doi
48 schema:value 10.1007/978-3-319-10539-0_3
49 rdf:type schema:PropertyValue
50 Nd82d9c61409a4b95b694d13697bcaa51 schema:isbn 978-3-319-10538-3
51 978-3-319-10539-0
52 schema:name The Formalisms of Quantum Mechanics
53 rdf:type schema:Book
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
58 schema:name Pure Mathematics
59 rdf:type schema:DefinedTerm
60 sg:person.016421035357.69 schema:affiliation https://www.grid.ac/institutes/grid.457338.e
61 schema:familyName David
62 schema:givenName François
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016421035357.69
64 rdf:type schema:Person
65 sg:pub.10.1007/978-3-642-61458-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039380737
66 https://doi.org/10.1007/978-3-642-61458-3
67 rdf:type schema:CreativeWork
68 sg:pub.10.1007/978-3-642-61993-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000334678
69 https://doi.org/10.1007/978-3-642-61993-9
70 rdf:type schema:CreativeWork
71 sg:pub.10.1007/bf02591126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034029640
72 https://doi.org/10.1007/bf02591126
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1063/1.1704187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057774129
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1088/0370-1301/62/1/303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059091765
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1090/s0002-9904-1947-08742-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015043335
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1103/physrev.115.485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043456385
81 rdf:type schema:CreativeWork
82 https://doi.org/10.2307/1969387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674771
83 rdf:type schema:CreativeWork
84 https://www.grid.ac/institutes/grid.457338.e schema:alternateName L'Institut de physique théorique
85 schema:name Institut de Physique Théorique, CEA Saclay, Gif-sur-Yvette, France
86 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...