Tumor Growth Prediction with Hyperelastic Biomechanical Model, Physiological Data Fusion, and Nonlinear Optimization View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Ken C. L. Wong , Ronald Summers , Electron Kebebew , Jianhua Yao

ABSTRACT

Tumor growth prediction is usually achieved by physiological modeling and model personalization from clinical measurements. Although image-based frameworks have been proposed with promising results, different issues such as infinitesimal strain assumption, complicated optimization procedures, and lack of functional information, may limit the prediction performance. Therefore, we propose a framework which comprises a hyperelastic biomechanical model for better physiological plausibility, gradient-free nonlinear optimization for more flexible choices of models and objective functions, and physiological data fusion of structural and functional images for better subject-specificity. Experiments were performed on synthetic and clinical data to verify parameter estimation capability and prediction performance of the framework. Comparisons of using different biomechanical models and objective functions were also performed. From the experimental results on eight patient data sets, the recall, precision, and relative volume difference (RVD) between predicted and measured tumor volumes are 84.85 ± 6.15%, 87.08 ± 7.83%, and 13.81 ± 6.64% respectively. More... »

PAGES

25-32

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-10470-6_4

DOI

http://dx.doi.org/10.1007/978-3-319-10470-6_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038124814

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25485359


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Proliferation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elastic Modulus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuroendocrine Tumors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nonlinear Dynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pancreatic Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Subtraction Technique", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wong", 
        "givenName": "Ken C. L.", 
        "id": "sg:person.01106723443.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106723443.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Summers", 
        "givenName": "Ronald", 
        "id": "sg:person.011331054577.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Arthritis and Musculoskeletal and Skin Diseases", 
          "id": "https://www.grid.ac/institutes/grid.420086.8", 
          "name": [
            "Endocrine Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kebebew", 
        "givenName": "Electron", 
        "id": "sg:person.0724132322.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724132322.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Jianhua", 
        "id": "sg:person.012366760067.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.1213353109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005439260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.10090908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006642352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-40760-4_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007239724", 
          "https://doi.org/10.1007/978-3-642-40760-4_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-007-0139-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012292263", 
          "https://doi.org/10.1007/s00285-007-0139-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-007-0139-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012292263", 
          "https://doi.org/10.1007/s00285-007-0139-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35098076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041527409", 
          "https://doi.org/10.1038/35098076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35098076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041527409", 
          "https://doi.org/10.1038/35098076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2012.2222027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061528994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2012.2222027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061528994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2012.2222027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061528994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2012.2222027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061528994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2012.2222027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061528994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2005.857217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/121.2.379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083347648"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Tumor growth prediction is usually achieved by physiological modeling and model personalization from clinical measurements. Although image-based frameworks have been proposed with promising results, different issues such as infinitesimal strain assumption, complicated optimization procedures, and lack of functional information, may limit the prediction performance. Therefore, we propose a framework which comprises a hyperelastic biomechanical model for better physiological plausibility, gradient-free nonlinear optimization for more flexible choices of models and objective functions, and physiological data fusion of structural and functional images for better subject-specificity. Experiments were performed on synthetic and clinical data to verify parameter estimation capability and prediction performance of the framework. Comparisons of using different biomechanical models and objective functions were also performed. From the experimental results on eight patient data sets, the recall, precision, and relative volume difference (RVD) between predicted and measured tumor volumes are 84.85 \u00b1 6.15%, 87.08 \u00b1 7.83%, and 13.81 \u00b1 6.64% respectively.", 
    "editor": [
      {
        "familyName": "Golland", 
        "givenName": "Polina", 
        "type": "Person"
      }, 
      {
        "familyName": "Hata", 
        "givenName": "Nobuhiko", 
        "type": "Person"
      }, 
      {
        "familyName": "Barillot", 
        "givenName": "Christian", 
        "type": "Person"
      }, 
      {
        "familyName": "Hornegger", 
        "givenName": "Joachim", 
        "type": "Person"
      }, 
      {
        "familyName": "Howe", 
        "givenName": "Robert", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-10470-6_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4055858", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-319-10469-0", 
        "978-3-319-10470-6"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2014", 
      "type": "Book"
    }, 
    "name": "Tumor Growth Prediction with Hyperelastic Biomechanical Model, Physiological Data Fusion, and Nonlinear Optimization", 
    "pagination": "25-32", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-10470-6_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b59dc5397ebb819f60286ffaf7a7f1cf8ae07f670f441a20e8488387309146f5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038124814"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25485359"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-10470-6_4", 
      "https://app.dimensions.ai/details/publication/pub.1038124814"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000353.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-10470-6_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10470-6_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10470-6_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10470-6_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10470-6_4'


 

This table displays all metadata directly associated to this object as RDF triples.

217 TRIPLES      23 PREDICATES      54 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-10470-6_4 schema:about N019f0d5d7d424e85aee20d9c65d78a56
2 N0975fb334af34eb2840745454478fc26
3 N09a7f85995a2409aa3f6340df36b568a
4 N1d0b680ecd8c43b4b4dec43c3a30d6a5
5 N1fcf85291b114707870f6a165f323a16
6 N2b8f08a52bb348d1b426ac932ed3418f
7 N38c666a19fce47ab98aefe1264e91634
8 N64d6ea935b5b4cf5af810cb9ebdca098
9 N81f3088381704d20b768ba3c1d3bbd28
10 N83515d946b5149139938f45d54b35e43
11 N872324fa42b84038a5df1fcd43c2862b
12 Nb42a814aabfc43edb5a8d3172e5fdfe4
13 Nb6bfdfd7370e48ebb9aa25078ee5e151
14 Nbd77544fd13040cfa3356c92cf1b2f1c
15 Nc57054e6392c42e1aa99f81075590f6b
16 Nc6ae4dd180ee4e9198e9a5af2bc3e2fc
17 Ncaf10621a7c548568f63b018d68b333b
18 Ne267eb24fe594e97b3319a9d6f31cac2
19 anzsrc-for:14
20 anzsrc-for:1403
21 schema:author N0a65bec1bd8d4d089d8af31dedd853f5
22 schema:citation sg:pub.10.1007/978-3-642-40760-4_36
23 sg:pub.10.1007/s00285-007-0139-x
24 sg:pub.10.1038/35098076
25 https://doi.org/10.1073/pnas.1213353109
26 https://doi.org/10.1109/tbme.2012.2222027
27 https://doi.org/10.1109/tmi.2005.857217
28 https://doi.org/10.1148/121.2.379
29 https://doi.org/10.1148/radiol.10090908
30 schema:datePublished 2014
31 schema:datePublishedReg 2014-01-01
32 schema:description Tumor growth prediction is usually achieved by physiological modeling and model personalization from clinical measurements. Although image-based frameworks have been proposed with promising results, different issues such as infinitesimal strain assumption, complicated optimization procedures, and lack of functional information, may limit the prediction performance. Therefore, we propose a framework which comprises a hyperelastic biomechanical model for better physiological plausibility, gradient-free nonlinear optimization for more flexible choices of models and objective functions, and physiological data fusion of structural and functional images for better subject-specificity. Experiments were performed on synthetic and clinical data to verify parameter estimation capability and prediction performance of the framework. Comparisons of using different biomechanical models and objective functions were also performed. From the experimental results on eight patient data sets, the recall, precision, and relative volume difference (RVD) between predicted and measured tumor volumes are 84.85 ± 6.15%, 87.08 ± 7.83%, and 13.81 ± 6.64% respectively.
33 schema:editor N7ce22e531f2a4ccba96fc4e94681c3bd
34 schema:genre chapter
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf Na889d4ddc03741978254b3d25a65a842
38 schema:name Tumor Growth Prediction with Hyperelastic Biomechanical Model, Physiological Data Fusion, and Nonlinear Optimization
39 schema:pagination 25-32
40 schema:productId N0105812dc1324f35915cb49cec668a15
41 N655b78add88d46049d2a672161d27283
42 Na2c6ad6b9c4f4915b832513291e2a334
43 Nca9c1f78fc9f467486e1448c36d5a688
44 schema:publisher N2d9df68333524c6683ed8dbe4d455b7f
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038124814
46 https://doi.org/10.1007/978-3-319-10470-6_4
47 schema:sdDatePublished 2019-04-15T10:46
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N8e36ef3048a54992ba4a2211bc415146
50 schema:url http://link.springer.com/10.1007/978-3-319-10470-6_4
51 sgo:license sg:explorer/license/
52 sgo:sdDataset chapters
53 rdf:type schema:Chapter
54 N0105812dc1324f35915cb49cec668a15 schema:name dimensions_id
55 schema:value pub.1038124814
56 rdf:type schema:PropertyValue
57 N019f0d5d7d424e85aee20d9c65d78a56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Female
59 rdf:type schema:DefinedTerm
60 N0308eae5c4ef473580484c72b071e012 rdf:first sg:person.0724132322.08
61 rdf:rest N2ced7b1620e2460c80679619dc27d911
62 N0975fb334af34eb2840745454478fc26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Models, Biological
64 rdf:type schema:DefinedTerm
65 N09a7f85995a2409aa3f6340df36b568a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Neuroendocrine Tumors
67 rdf:type schema:DefinedTerm
68 N0a65bec1bd8d4d089d8af31dedd853f5 rdf:first sg:person.01106723443.05
69 rdf:rest N4e72a8a3f683437b93aee832d0a28cd0
70 N1d0b680ecd8c43b4b4dec43c3a30d6a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Humans
72 rdf:type schema:DefinedTerm
73 N1fcf85291b114707870f6a165f323a16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Nonlinear Dynamics
75 rdf:type schema:DefinedTerm
76 N23c36ab4fe384c6789a386010ad1d9ca schema:familyName Golland
77 schema:givenName Polina
78 rdf:type schema:Person
79 N2b8f08a52bb348d1b426ac932ed3418f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Sensitivity and Specificity
81 rdf:type schema:DefinedTerm
82 N2ced7b1620e2460c80679619dc27d911 rdf:first sg:person.012366760067.46
83 rdf:rest rdf:nil
84 N2d9df68333524c6683ed8dbe4d455b7f schema:location Cham
85 schema:name Springer International Publishing
86 rdf:type schema:Organisation
87 N38c666a19fce47ab98aefe1264e91634 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Reproducibility of Results
89 rdf:type schema:DefinedTerm
90 N4e72a8a3f683437b93aee832d0a28cd0 rdf:first sg:person.011331054577.30
91 rdf:rest N0308eae5c4ef473580484c72b071e012
92 N53bc8d5f71a442319d759d113a9f09d3 schema:name Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA
93 rdf:type schema:Organization
94 N628d00fd4f65471687f7ead6bd27bba9 rdf:first Ne6ccfa69329f455c996b466f688acefe
95 rdf:rest N7b7bb72e187945ac95fff96bb2d650f4
96 N64d6ea935b5b4cf5af810cb9ebdca098 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Positron-Emission Tomography
98 rdf:type schema:DefinedTerm
99 N655b78add88d46049d2a672161d27283 schema:name doi
100 schema:value 10.1007/978-3-319-10470-6_4
101 rdf:type schema:PropertyValue
102 N7b7bb72e187945ac95fff96bb2d650f4 rdf:first Ndd7830c0ec1e46bebfb2a236f7c7a14f
103 rdf:rest Na19bdff34a99410aa2a6d7833b705983
104 N7ce22e531f2a4ccba96fc4e94681c3bd rdf:first N23c36ab4fe384c6789a386010ad1d9ca
105 rdf:rest N9f28baa703e745c5a6812c07df9cbe93
106 N81f3088381704d20b768ba3c1d3bbd28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Image Interpretation, Computer-Assisted
108 rdf:type schema:DefinedTerm
109 N83515d946b5149139938f45d54b35e43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Elastic Modulus
111 rdf:type schema:DefinedTerm
112 N872324fa42b84038a5df1fcd43c2862b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Subtraction Technique
114 rdf:type schema:DefinedTerm
115 N8e36ef3048a54992ba4a2211bc415146 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 N9a370fc70a6e4baf8039a56ec40fdd38 schema:familyName Howe
118 schema:givenName Robert
119 rdf:type schema:Person
120 N9f28baa703e745c5a6812c07df9cbe93 rdf:first Nf43f11e58c2347018132389bc0ea6261
121 rdf:rest N628d00fd4f65471687f7ead6bd27bba9
122 Na19bdff34a99410aa2a6d7833b705983 rdf:first N9a370fc70a6e4baf8039a56ec40fdd38
123 rdf:rest rdf:nil
124 Na2c6ad6b9c4f4915b832513291e2a334 schema:name pubmed_id
125 schema:value 25485359
126 rdf:type schema:PropertyValue
127 Na889d4ddc03741978254b3d25a65a842 schema:isbn 978-3-319-10469-0
128 978-3-319-10470-6
129 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014
130 rdf:type schema:Book
131 Naaa234420f6d46959361f4e79d0fa50c schema:name Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA
132 rdf:type schema:Organization
133 Nb42a814aabfc43edb5a8d3172e5fdfe4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Pancreatic Neoplasms
135 rdf:type schema:DefinedTerm
136 Nb6bfdfd7370e48ebb9aa25078ee5e151 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Middle Aged
138 rdf:type schema:DefinedTerm
139 Nbd77544fd13040cfa3356c92cf1b2f1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Tomography, X-Ray Computed
141 rdf:type schema:DefinedTerm
142 Nc57054e6392c42e1aa99f81075590f6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Computer Simulation
144 rdf:type schema:DefinedTerm
145 Nc6ae4dd180ee4e9198e9a5af2bc3e2fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Algorithms
147 rdf:type schema:DefinedTerm
148 Nca9c1f78fc9f467486e1448c36d5a688 schema:name readcube_id
149 schema:value b59dc5397ebb819f60286ffaf7a7f1cf8ae07f670f441a20e8488387309146f5
150 rdf:type schema:PropertyValue
151 Ncaf10621a7c548568f63b018d68b333b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Male
153 rdf:type schema:DefinedTerm
154 Ncce8b1fb01814374ad2fd2bcbd91a095 schema:name Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA
155 rdf:type schema:Organization
156 Ndd7830c0ec1e46bebfb2a236f7c7a14f schema:familyName Hornegger
157 schema:givenName Joachim
158 rdf:type schema:Person
159 Ne267eb24fe594e97b3319a9d6f31cac2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Cell Proliferation
161 rdf:type schema:DefinedTerm
162 Ne6ccfa69329f455c996b466f688acefe schema:familyName Barillot
163 schema:givenName Christian
164 rdf:type schema:Person
165 Nf43f11e58c2347018132389bc0ea6261 schema:familyName Hata
166 schema:givenName Nobuhiko
167 rdf:type schema:Person
168 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
169 schema:name Economics
170 rdf:type schema:DefinedTerm
171 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
172 schema:name Econometrics
173 rdf:type schema:DefinedTerm
174 sg:grant.4055858 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-10470-6_4
175 rdf:type schema:MonetaryGrant
176 sg:person.01106723443.05 schema:affiliation N53bc8d5f71a442319d759d113a9f09d3
177 schema:familyName Wong
178 schema:givenName Ken C. L.
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106723443.05
180 rdf:type schema:Person
181 sg:person.011331054577.30 schema:affiliation Naaa234420f6d46959361f4e79d0fa50c
182 schema:familyName Summers
183 schema:givenName Ronald
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30
185 rdf:type schema:Person
186 sg:person.012366760067.46 schema:affiliation Ncce8b1fb01814374ad2fd2bcbd91a095
187 schema:familyName Yao
188 schema:givenName Jianhua
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46
190 rdf:type schema:Person
191 sg:person.0724132322.08 schema:affiliation https://www.grid.ac/institutes/grid.420086.8
192 schema:familyName Kebebew
193 schema:givenName Electron
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724132322.08
195 rdf:type schema:Person
196 sg:pub.10.1007/978-3-642-40760-4_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007239724
197 https://doi.org/10.1007/978-3-642-40760-4_36
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/s00285-007-0139-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012292263
200 https://doi.org/10.1007/s00285-007-0139-x
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/35098076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041527409
203 https://doi.org/10.1038/35098076
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1073/pnas.1213353109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005439260
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/tbme.2012.2222027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061528994
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/tmi.2005.857217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694777
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1148/121.2.379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083347648
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1148/radiol.10090908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006642352
214 rdf:type schema:CreativeWork
215 https://www.grid.ac/institutes/grid.420086.8 schema:alternateName National Institute of Arthritis and Musculoskeletal and Skin Diseases
216 schema:name Endocrine Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
217 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...