Robust Image-Based Estimation of Cardiac Tissue Parameters and Their Uncertainty from Noisy Data View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Dominik Neumann , Tommaso Mansi , Bogdan Georgescu , Ali Kamen , Elham Kayvanpour , Ali Amr , Farbod Sedaghat-Hamedani , Jan Haas , Hugo Katus , Benjamin Meder , Joachim Hornegger , Dorin Comaniciu

ABSTRACT

Clinical applications of computational cardiac models require precise personalization, i.e. fitting model parameters to capture patient’s physiology. However, due to parameter non-identifiability, limited data, uncertainty in the clinical measurements, and modeling assumptions, various combinations of parameter values may exist that yield the same quality of fit. Hence, there is a need for quantifying the uncertainty in estimated parameters and to ascertain the uniqueness of the found solution. This paper presents a stochastic method to estimate the parameters of an image-based electromechanical model of the heart and their uncertainty due to noise in measurements. First, Bayesian inference is applied to fully estimate the posterior probability density function (PDF) of the model. To that end, Markov Chain Monte Carlo sampling is used, which is made computationally tractable by employing a fast surrogate model based on Polynomial Chaos Expansion, instead of the true forward model. Then, we use the mean-shift algorithm to automatically find the modes of the PDF and select the most likely one while being robust to noise. The approach is used to estimate global active stress and passive stiffness from invasive pressure and image-based volume quantification. Experiments on eight patients showed that not only our approach yielded goodness of fits equivalent to a well-established deterministic method, but we could also demonstrate the non-uniqueness of the problem and report uncertainty estimates, crucial information for subsequent clinical assessments of the personalized models. More... »

PAGES

9-16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-10470-6_2

DOI

http://dx.doi.org/10.1007/978-3-319-10470-6_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006216356

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25485357


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiomyopathy, Dilated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Conduction System", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Ventricles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging, Cine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Cardiovascular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal-To-Noise Ratio", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stroke Volume", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ventricular Dysfunction, Left", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pattern Recognition Lab, FAU Erlangen-N\u00fcrnberg, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
            "Pattern Recognition Lab, FAU Erlangen-N\u00fcrnberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neumann", 
        "givenName": "Dominik", 
        "id": "sg:person.01054566020.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054566020.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mansi", 
        "givenName": "Tommaso", 
        "id": "sg:person.01217474726.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamen", 
        "givenName": "Ali", 
        "id": "sg:person.0656777564.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656777564.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine III, University Hospital Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Internal Medicine III, University Hospital Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kayvanpour", 
        "givenName": "Elham", 
        "id": "sg:person.01201613000.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201613000.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine III, University Hospital Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Internal Medicine III, University Hospital Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amr", 
        "givenName": "Ali", 
        "id": "sg:person.0644724502.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644724502.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine III, University Hospital Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Internal Medicine III, University Hospital Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sedaghat-Hamedani", 
        "givenName": "Farbod", 
        "id": "sg:person.01247726200.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247726200.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine III, University Hospital Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Internal Medicine III, University Hospital Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haas", 
        "givenName": "Jan", 
        "id": "sg:person.01173725567.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173725567.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine III, University Hospital Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Internal Medicine III, University Hospital Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Katus", 
        "givenName": "Hugo", 
        "id": "sg:person.011260235657.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011260235657.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine III, University Hospital Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Internal Medicine III, University Hospital Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meder", 
        "givenName": "Benjamin", 
        "id": "sg:person.01027273360.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027273360.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pattern Recognition Lab, FAU Erlangen-N\u00fcrnberg, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Pattern Recognition Lab, FAU Erlangen-N\u00fcrnberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hornegger", 
        "givenName": "Joachim", 
        "id": "sg:person.01322323610.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322323610.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Clinical applications of computational cardiac models require precise personalization, i.e.\u00a0fitting model parameters to capture patient\u2019s physiology. However, due to parameter non-identifiability, limited data, uncertainty in the clinical measurements, and modeling assumptions, various combinations of parameter values may exist that yield the same quality of fit. Hence, there is a need for quantifying the uncertainty in estimated parameters and to ascertain the uniqueness of the found solution. This paper presents a stochastic method to estimate the parameters of an image-based electromechanical model of the heart and their uncertainty due to noise in measurements. First, Bayesian inference is applied to fully estimate the posterior probability density function (PDF) of the model. To that end, Markov Chain Monte Carlo sampling is used, which is made computationally tractable by employing a fast surrogate model based on Polynomial Chaos Expansion, instead of the true forward model. Then, we use the mean-shift algorithm to automatically find the modes of the PDF and select the most likely one while being robust to noise. The approach is used to estimate global active stress and passive stiffness from invasive pressure and image-based volume quantification. Experiments on eight patients showed that not only our approach yielded goodness of fits equivalent to a well-established deterministic method, but we could also demonstrate the non-uniqueness of the problem and report uncertainty estimates, crucial information for subsequent clinical assessments of the personalized models.", 
    "editor": [
      {
        "familyName": "Golland", 
        "givenName": "Polina", 
        "type": "Person"
      }, 
      {
        "familyName": "Hata", 
        "givenName": "Nobuhiko", 
        "type": "Person"
      }, 
      {
        "familyName": "Barillot", 
        "givenName": "Christian", 
        "type": "Person"
      }, 
      {
        "familyName": "Hornegger", 
        "givenName": "Joachim", 
        "type": "Person"
      }, 
      {
        "familyName": "Howe", 
        "givenName": "Robert", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-10470-6_2", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-10469-0", 
        "978-3-319-10470-6"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2014", 
      "type": "Book"
    }, 
    "keywords": [
      "posterior probability density function", 
      "Markov chain Monte Carlo sampling", 
      "polynomial chaos expansion", 
      "fast surrogate model", 
      "Monte Carlo sampling", 
      "true forward model", 
      "probability density function", 
      "chaos expansion", 
      "stochastic method", 
      "Carlo sampling", 
      "surrogate model", 
      "Bayesian inference", 
      "deterministic methods", 
      "density function", 
      "goodness of fit", 
      "noisy data", 
      "computational cardiac models", 
      "model parameters", 
      "electromechanical model", 
      "parameter values", 
      "modeling assumptions", 
      "forward model", 
      "uncertainty estimates", 
      "cardiac tissue parameters", 
      "mean shift algorithm", 
      "precise personalization", 
      "uncertainty", 
      "cardiac models", 
      "parameters", 
      "noise", 
      "model", 
      "uniqueness", 
      "personalized model", 
      "fit", 
      "inference", 
      "estimation", 
      "goodness", 
      "algorithm", 
      "active stress", 
      "tissue parameters", 
      "same quality", 
      "problem", 
      "solution", 
      "assumption", 
      "approach", 
      "estimates", 
      "measurements", 
      "crucial information", 
      "applications", 
      "function", 
      "expansion", 
      "sampling", 
      "mode", 
      "data", 
      "experiments", 
      "values", 
      "stiffness", 
      "invasive pressure", 
      "subsequent clinical assessment", 
      "image-based estimation", 
      "information", 
      "combination", 
      "quantification", 
      "end", 
      "limited data", 
      "quality", 
      "pressure", 
      "clinical measurements", 
      "stress", 
      "volume quantification", 
      "need", 
      "assessment", 
      "personalization", 
      "heart", 
      "clinical application", 
      "passive stiffness", 
      "physiology", 
      "method", 
      "paper", 
      "clinical assessment", 
      "patients"
    ], 
    "name": "Robust Image-Based Estimation of Cardiac Tissue Parameters and Their Uncertainty from Noisy Data", 
    "pagination": "9-16", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006216356"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-10470-6_2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25485357"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-10470-6_2", 
      "https://app.dimensions.ai/details/publication/pub.1006216356"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_432.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-10470-6_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10470-6_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10470-6_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10470-6_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10470-6_2'


 

This table displays all metadata directly associated to this object as RDF triples.

311 TRIPLES      23 PREDICATES      124 URIs      115 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-10470-6_2 schema:about N345c40c09bb84d1dab3a39b0040e5e71
2 N527382cf409f4da19d506cbee6081e55
3 N78dea0cb6e27431db1d74a61d3146b21
4 N881766d04b774dde842c51432f5cea49
5 N8899720f68ed4cc8b20258386cf9d4de
6 N8c5019aff84144d38fa209204bac9a19
7 N908b5cdd86494982a6ae6ce5c2e6056e
8 N9a932a42d105418a9a3844592060a269
9 Na2d45833d40843ecbcbd39c6e3e9d131
10 Naf32120c56aa4cc98805343e61d78105
11 Nb713e05a5425495bab2a5297d8fe7f80
12 Nd437487ea0b24ee980fda2ee37bfcd5a
13 Ne21f8871adc340b598e93ab30bc92d93
14 Ne6f65954a5f44104b365a0594805a447
15 anzsrc-for:01
16 anzsrc-for:0104
17 anzsrc-for:08
18 anzsrc-for:0801
19 schema:author N1a7c515cee064f65a9bb61e58751540a
20 schema:datePublished 2014
21 schema:datePublishedReg 2014-01-01
22 schema:description Clinical applications of computational cardiac models require precise personalization, i.e. fitting model parameters to capture patient’s physiology. However, due to parameter non-identifiability, limited data, uncertainty in the clinical measurements, and modeling assumptions, various combinations of parameter values may exist that yield the same quality of fit. Hence, there is a need for quantifying the uncertainty in estimated parameters and to ascertain the uniqueness of the found solution. This paper presents a stochastic method to estimate the parameters of an image-based electromechanical model of the heart and their uncertainty due to noise in measurements. First, Bayesian inference is applied to fully estimate the posterior probability density function (PDF) of the model. To that end, Markov Chain Monte Carlo sampling is used, which is made computationally tractable by employing a fast surrogate model based on Polynomial Chaos Expansion, instead of the true forward model. Then, we use the mean-shift algorithm to automatically find the modes of the PDF and select the most likely one while being robust to noise. The approach is used to estimate global active stress and passive stiffness from invasive pressure and image-based volume quantification. Experiments on eight patients showed that not only our approach yielded goodness of fits equivalent to a well-established deterministic method, but we could also demonstrate the non-uniqueness of the problem and report uncertainty estimates, crucial information for subsequent clinical assessments of the personalized models.
23 schema:editor N6d7e8ea884284d5597aeb89ddedab59c
24 schema:genre chapter
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N764dc31fb72f45619a393e9e7baf0278
28 schema:keywords Bayesian inference
29 Carlo sampling
30 Markov chain Monte Carlo sampling
31 Monte Carlo sampling
32 active stress
33 algorithm
34 applications
35 approach
36 assessment
37 assumption
38 cardiac models
39 cardiac tissue parameters
40 chaos expansion
41 clinical application
42 clinical assessment
43 clinical measurements
44 combination
45 computational cardiac models
46 crucial information
47 data
48 density function
49 deterministic methods
50 electromechanical model
51 end
52 estimates
53 estimation
54 expansion
55 experiments
56 fast surrogate model
57 fit
58 forward model
59 function
60 goodness
61 goodness of fit
62 heart
63 image-based estimation
64 inference
65 information
66 invasive pressure
67 limited data
68 mean shift algorithm
69 measurements
70 method
71 mode
72 model
73 model parameters
74 modeling assumptions
75 need
76 noise
77 noisy data
78 paper
79 parameter values
80 parameters
81 passive stiffness
82 patients
83 personalization
84 personalized model
85 physiology
86 polynomial chaos expansion
87 posterior probability density function
88 precise personalization
89 pressure
90 probability density function
91 problem
92 quality
93 quantification
94 same quality
95 sampling
96 solution
97 stiffness
98 stochastic method
99 stress
100 subsequent clinical assessment
101 surrogate model
102 tissue parameters
103 true forward model
104 uncertainty
105 uncertainty estimates
106 uniqueness
107 values
108 volume quantification
109 schema:name Robust Image-Based Estimation of Cardiac Tissue Parameters and Their Uncertainty from Noisy Data
110 schema:pagination 9-16
111 schema:productId N5d0e7321b5d042c0a1ce1e709d5706ec
112 N9b24b303c63d48d7bc52e1aee274078a
113 Nf0582162c5d74baaabbbbfa0bdd5bf43
114 schema:publisher N33adfbac1f9e4664bd7ac6fd65dd9d8d
115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006216356
116 https://doi.org/10.1007/978-3-319-10470-6_2
117 schema:sdDatePublished 2022-05-20T07:48
118 schema:sdLicense https://scigraph.springernature.com/explorer/license/
119 schema:sdPublisher Neb677e0627b64e7c95b5ca042819defb
120 schema:url https://doi.org/10.1007/978-3-319-10470-6_2
121 sgo:license sg:explorer/license/
122 sgo:sdDataset chapters
123 rdf:type schema:Chapter
124 N045b5b9516e74c768f644859372e533f schema:familyName Hata
125 schema:givenName Nobuhiko
126 rdf:type schema:Person
127 N104810d2f3c24bb0ada57e70900447c8 rdf:first N045b5b9516e74c768f644859372e533f
128 rdf:rest N1685585f096c4ebeb077aef685d26fb5
129 N1685585f096c4ebeb077aef685d26fb5 rdf:first Ned6bfc4e35de4405ac0b44b53f723f0d
130 rdf:rest Nc7016f5a5177452f9358103156177588
131 N1a7c515cee064f65a9bb61e58751540a rdf:first sg:person.01054566020.28
132 rdf:rest N3bd93a80961847248ee6a99adf3ec66c
133 N25b1f2c58c2d46c0a7837ea2e1a290e3 schema:familyName Hornegger
134 schema:givenName Joachim
135 rdf:type schema:Person
136 N28d65efb0f4b4f69b11ce25f7abdde1d rdf:first sg:person.01201613000.02
137 rdf:rest N69f8a7918740469cb841a9f8807ea284
138 N2973ab8761424e84aafbf3eb79ced8c9 rdf:first sg:person.01322323610.92
139 rdf:rest N74cc3afc9e5d47068d22552130ab3e4e
140 N33adfbac1f9e4664bd7ac6fd65dd9d8d schema:name Springer Nature
141 rdf:type schema:Organisation
142 N345c40c09bb84d1dab3a39b0040e5e71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Models, Cardiovascular
144 rdf:type schema:DefinedTerm
145 N3583c164c37e40659a34c8cf379a9cae rdf:first sg:person.01027273360.08
146 rdf:rest N2973ab8761424e84aafbf3eb79ced8c9
147 N366e5fb4ab8940d4a2243797d631a0c0 schema:familyName Howe
148 schema:givenName Robert
149 rdf:type schema:Person
150 N3bd93a80961847248ee6a99adf3ec66c rdf:first sg:person.01217474726.73
151 rdf:rest Nd7d57d524aa8433a993e62270663c81d
152 N527382cf409f4da19d506cbee6081e55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Reproducibility of Results
154 rdf:type schema:DefinedTerm
155 N5d0e7321b5d042c0a1ce1e709d5706ec schema:name dimensions_id
156 schema:value pub.1006216356
157 rdf:type schema:PropertyValue
158 N621b0f0615e14efd80271adbb2aa3da0 rdf:first sg:person.011260235657.38
159 rdf:rest N3583c164c37e40659a34c8cf379a9cae
160 N69f8a7918740469cb841a9f8807ea284 rdf:first sg:person.0644724502.05
161 rdf:rest Nfff022f690e3485e884703b548ea1419
162 N6d7e8ea884284d5597aeb89ddedab59c rdf:first Nac10e9d7581246bd92aff8edc0df2ff3
163 rdf:rest N104810d2f3c24bb0ada57e70900447c8
164 N74cc3afc9e5d47068d22552130ab3e4e rdf:first sg:person.01066111014.77
165 rdf:rest rdf:nil
166 N764dc31fb72f45619a393e9e7baf0278 schema:isbn 978-3-319-10469-0
167 978-3-319-10470-6
168 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014
169 rdf:type schema:Book
170 N78dea0cb6e27431db1d74a61d3146b21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Computer Simulation
172 rdf:type schema:DefinedTerm
173 N816a6b6f665e4319a63bd243e50fd107 rdf:first N366e5fb4ab8940d4a2243797d631a0c0
174 rdf:rest rdf:nil
175 N881766d04b774dde842c51432f5cea49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Heart Conduction System
177 rdf:type schema:DefinedTerm
178 N8899720f68ed4cc8b20258386cf9d4de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Humans
180 rdf:type schema:DefinedTerm
181 N8c5019aff84144d38fa209204bac9a19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Ventricular Dysfunction, Left
183 rdf:type schema:DefinedTerm
184 N908b5cdd86494982a6ae6ce5c2e6056e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Cardiomyopathy, Dilated
186 rdf:type schema:DefinedTerm
187 N9a932a42d105418a9a3844592060a269 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Magnetic Resonance Imaging, Cine
189 rdf:type schema:DefinedTerm
190 N9b24b303c63d48d7bc52e1aee274078a schema:name doi
191 schema:value 10.1007/978-3-319-10470-6_2
192 rdf:type schema:PropertyValue
193 Na2d45833d40843ecbcbd39c6e3e9d131 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Signal-To-Noise Ratio
195 rdf:type schema:DefinedTerm
196 Nac10e9d7581246bd92aff8edc0df2ff3 schema:familyName Golland
197 schema:givenName Polina
198 rdf:type schema:Person
199 Naf32120c56aa4cc98805343e61d78105 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Image Interpretation, Computer-Assisted
201 rdf:type schema:DefinedTerm
202 Nb713e05a5425495bab2a5297d8fe7f80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Stroke Volume
204 rdf:type schema:DefinedTerm
205 Nc67d62b1fec64ad9a72f5d9f51435559 rdf:first sg:person.01173725567.20
206 rdf:rest N621b0f0615e14efd80271adbb2aa3da0
207 Nc7016f5a5177452f9358103156177588 rdf:first N25b1f2c58c2d46c0a7837ea2e1a290e3
208 rdf:rest N816a6b6f665e4319a63bd243e50fd107
209 Nd437487ea0b24ee980fda2ee37bfcd5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Heart Ventricles
211 rdf:type schema:DefinedTerm
212 Nd7d57d524aa8433a993e62270663c81d rdf:first sg:person.0703547214.37
213 rdf:rest Ne9a960c106ef42eea3ef88c04ad14dd4
214 Ne21f8871adc340b598e93ab30bc92d93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
215 schema:name Imaging, Three-Dimensional
216 rdf:type schema:DefinedTerm
217 Ne6f65954a5f44104b365a0594805a447 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
218 schema:name Sensitivity and Specificity
219 rdf:type schema:DefinedTerm
220 Ne9a960c106ef42eea3ef88c04ad14dd4 rdf:first sg:person.0656777564.42
221 rdf:rest N28d65efb0f4b4f69b11ce25f7abdde1d
222 Neb677e0627b64e7c95b5ca042819defb schema:name Springer Nature - SN SciGraph project
223 rdf:type schema:Organization
224 Ned6bfc4e35de4405ac0b44b53f723f0d schema:familyName Barillot
225 schema:givenName Christian
226 rdf:type schema:Person
227 Nf0582162c5d74baaabbbbfa0bdd5bf43 schema:name pubmed_id
228 schema:value 25485357
229 rdf:type schema:PropertyValue
230 Nfff022f690e3485e884703b548ea1419 rdf:first sg:person.01247726200.41
231 rdf:rest Nc67d62b1fec64ad9a72f5d9f51435559
232 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
233 schema:name Mathematical Sciences
234 rdf:type schema:DefinedTerm
235 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
236 schema:name Statistics
237 rdf:type schema:DefinedTerm
238 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
239 schema:name Information and Computing Sciences
240 rdf:type schema:DefinedTerm
241 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
242 schema:name Artificial Intelligence and Image Processing
243 rdf:type schema:DefinedTerm
244 sg:person.01027273360.08 schema:affiliation grid-institutes:grid.5253.1
245 schema:familyName Meder
246 schema:givenName Benjamin
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027273360.08
248 rdf:type schema:Person
249 sg:person.01054566020.28 schema:affiliation grid-institutes:None
250 schema:familyName Neumann
251 schema:givenName Dominik
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054566020.28
253 rdf:type schema:Person
254 sg:person.01066111014.77 schema:affiliation grid-institutes:None
255 schema:familyName Comaniciu
256 schema:givenName Dorin
257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
258 rdf:type schema:Person
259 sg:person.011260235657.38 schema:affiliation grid-institutes:grid.5253.1
260 schema:familyName Katus
261 schema:givenName Hugo
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011260235657.38
263 rdf:type schema:Person
264 sg:person.01173725567.20 schema:affiliation grid-institutes:grid.5253.1
265 schema:familyName Haas
266 schema:givenName Jan
267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173725567.20
268 rdf:type schema:Person
269 sg:person.01201613000.02 schema:affiliation grid-institutes:grid.5253.1
270 schema:familyName Kayvanpour
271 schema:givenName Elham
272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201613000.02
273 rdf:type schema:Person
274 sg:person.01217474726.73 schema:affiliation grid-institutes:None
275 schema:familyName Mansi
276 schema:givenName Tommaso
277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73
278 rdf:type schema:Person
279 sg:person.01247726200.41 schema:affiliation grid-institutes:grid.5253.1
280 schema:familyName Sedaghat-Hamedani
281 schema:givenName Farbod
282 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247726200.41
283 rdf:type schema:Person
284 sg:person.01322323610.92 schema:affiliation grid-institutes:None
285 schema:familyName Hornegger
286 schema:givenName Joachim
287 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322323610.92
288 rdf:type schema:Person
289 sg:person.0644724502.05 schema:affiliation grid-institutes:grid.5253.1
290 schema:familyName Amr
291 schema:givenName Ali
292 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644724502.05
293 rdf:type schema:Person
294 sg:person.0656777564.42 schema:affiliation grid-institutes:None
295 schema:familyName Kamen
296 schema:givenName Ali
297 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656777564.42
298 rdf:type schema:Person
299 sg:person.0703547214.37 schema:affiliation grid-institutes:None
300 schema:familyName Georgescu
301 schema:givenName Bogdan
302 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
303 rdf:type schema:Person
304 grid-institutes:None schema:alternateName Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA
305 Pattern Recognition Lab, FAU Erlangen-Nürnberg, Germany
306 schema:name Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA
307 Pattern Recognition Lab, FAU Erlangen-Nürnberg, Germany
308 rdf:type schema:Organization
309 grid-institutes:grid.5253.1 schema:alternateName Department of Internal Medicine III, University Hospital Heidelberg, Germany
310 schema:name Department of Internal Medicine III, University Hospital Heidelberg, Germany
311 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...