Robust Image-Based Estimation of Cardiac Tissue Parameters and Their Uncertainty from Noisy Data View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Dominik Neumann , Tommaso Mansi , Bogdan Georgescu , Ali Kamen , Elham Kayvanpour , Ali Amr , Farbod Sedaghat-Hamedani , Jan Haas , Hugo Katus , Benjamin Meder , Joachim Hornegger , Dorin Comaniciu

ABSTRACT

Clinical applications of computational cardiac models require precise personalization, i.e. fitting model parameters to capture patient’s physiology. However, due to parameter non-identifiability, limited data, uncertainty in the clinical measurements, and modeling assumptions, various combinations of parameter values may exist that yield the same quality of fit. Hence, there is a need for quantifying the uncertainty in estimated parameters and to ascertain the uniqueness of the found solution. This paper presents a stochastic method to estimate the parameters of an image-based electromechanical model of the heart and their uncertainty due to noise in measurements. First, Bayesian inference is applied to fully estimate the posterior probability density function (PDF) of the model. To that end, Markov Chain Monte Carlo sampling is used, which is made computationally tractable by employing a fast surrogate model based on Polynomial Chaos Expansion, instead of the true forward model. Then, we use the mean-shift algorithm to automatically find the modes of the PDF and select the most likely one while being robust to noise. The approach is used to estimate global active stress and passive stiffness from invasive pressure and image-based volume quantification. Experiments on eight patients showed that not only our approach yielded goodness of fits equivalent to a well-established deterministic method, but we could also demonstrate the non-uniqueness of the problem and report uncertainty estimates, crucial information for subsequent clinical assessments of the personalized models. More... »

PAGES

9-16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-10470-6_2

DOI

http://dx.doi.org/10.1007/978-3-319-10470-6_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006216356

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25485357


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiomyopathy, Dilated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Conduction System", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Ventricles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging, Cine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Cardiovascular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal-To-Noise Ratio", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stroke Volume", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ventricular Dysfunction, Left", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pattern Recognition Lab, FAU Erlangen-N\u00fcrnberg, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
            "Pattern Recognition Lab, FAU Erlangen-N\u00fcrnberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neumann", 
        "givenName": "Dominik", 
        "id": "sg:person.01054566020.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054566020.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mansi", 
        "givenName": "Tommaso", 
        "id": "sg:person.01217474726.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamen", 
        "givenName": "Ali", 
        "id": "sg:person.0656777564.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656777564.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine III, University Hospital Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Internal Medicine III, University Hospital Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kayvanpour", 
        "givenName": "Elham", 
        "id": "sg:person.01201613000.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201613000.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine III, University Hospital Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Internal Medicine III, University Hospital Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amr", 
        "givenName": "Ali", 
        "id": "sg:person.0644724502.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644724502.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine III, University Hospital Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Internal Medicine III, University Hospital Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sedaghat-Hamedani", 
        "givenName": "Farbod", 
        "id": "sg:person.01247726200.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247726200.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine III, University Hospital Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Internal Medicine III, University Hospital Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haas", 
        "givenName": "Jan", 
        "id": "sg:person.01173725567.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173725567.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine III, University Hospital Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Internal Medicine III, University Hospital Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Katus", 
        "givenName": "Hugo", 
        "id": "sg:person.011260235657.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011260235657.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine III, University Hospital Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Internal Medicine III, University Hospital Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meder", 
        "givenName": "Benjamin", 
        "id": "sg:person.01027273360.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027273360.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pattern Recognition Lab, FAU Erlangen-N\u00fcrnberg, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Pattern Recognition Lab, FAU Erlangen-N\u00fcrnberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hornegger", 
        "givenName": "Joachim", 
        "id": "sg:person.01322323610.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322323610.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Clinical applications of computational cardiac models require precise personalization, i.e.\u00a0fitting model parameters to capture patient\u2019s physiology. However, due to parameter non-identifiability, limited data, uncertainty in the clinical measurements, and modeling assumptions, various combinations of parameter values may exist that yield the same quality of fit. Hence, there is a need for quantifying the uncertainty in estimated parameters and to ascertain the uniqueness of the found solution. This paper presents a stochastic method to estimate the parameters of an image-based electromechanical model of the heart and their uncertainty due to noise in measurements. First, Bayesian inference is applied to fully estimate the posterior probability density function (PDF) of the model. To that end, Markov Chain Monte Carlo sampling is used, which is made computationally tractable by employing a fast surrogate model based on Polynomial Chaos Expansion, instead of the true forward model. Then, we use the mean-shift algorithm to automatically find the modes of the PDF and select the most likely one while being robust to noise. The approach is used to estimate global active stress and passive stiffness from invasive pressure and image-based volume quantification. Experiments on eight patients showed that not only our approach yielded goodness of fits equivalent to a well-established deterministic method, but we could also demonstrate the non-uniqueness of the problem and report uncertainty estimates, crucial information for subsequent clinical assessments of the personalized models.", 
    "editor": [
      {
        "familyName": "Golland", 
        "givenName": "Polina", 
        "type": "Person"
      }, 
      {
        "familyName": "Hata", 
        "givenName": "Nobuhiko", 
        "type": "Person"
      }, 
      {
        "familyName": "Barillot", 
        "givenName": "Christian", 
        "type": "Person"
      }, 
      {
        "familyName": "Hornegger", 
        "givenName": "Joachim", 
        "type": "Person"
      }, 
      {
        "familyName": "Howe", 
        "givenName": "Robert", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-10470-6_2", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-10469-0", 
        "978-3-319-10470-6"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2014", 
      "type": "Book"
    }, 
    "keywords": [
      "posterior probability density function", 
      "Markov chain Monte Carlo sampling", 
      "polynomial chaos expansion", 
      "fast surrogate model", 
      "Monte Carlo sampling", 
      "true forward model", 
      "probability density function", 
      "chaos expansion", 
      "stochastic method", 
      "Carlo sampling", 
      "surrogate model", 
      "deterministic methods", 
      "Bayesian inference", 
      "density function", 
      "goodness of fit", 
      "noisy data", 
      "computational cardiac models", 
      "model parameters", 
      "electromechanical model", 
      "parameter values", 
      "modeling assumptions", 
      "uncertainty estimates", 
      "forward model", 
      "cardiac tissue parameters", 
      "mean shift algorithm", 
      "precise personalization", 
      "uncertainty", 
      "cardiac models", 
      "parameters", 
      "noise", 
      "model", 
      "uniqueness", 
      "personalized model", 
      "fit", 
      "inference", 
      "estimation", 
      "goodness", 
      "algorithm", 
      "active stress", 
      "same quality", 
      "tissue parameters", 
      "problem", 
      "solution", 
      "approach", 
      "assumption", 
      "estimates", 
      "measurements", 
      "crucial information", 
      "applications", 
      "expansion", 
      "function", 
      "sampling", 
      "mode", 
      "data", 
      "image-based estimation", 
      "subsequent clinical assessment", 
      "experiments", 
      "invasive pressure", 
      "values", 
      "stiffness", 
      "information", 
      "combination", 
      "quantification", 
      "end", 
      "limited data", 
      "quality", 
      "clinical measurements", 
      "pressure", 
      "stress", 
      "need", 
      "volume quantification", 
      "assessment", 
      "heart", 
      "personalization", 
      "clinical applications", 
      "passive stiffness", 
      "physiology", 
      "method", 
      "paper", 
      "clinical assessment", 
      "patients", 
      "image-based electromechanical model", 
      "Chain Monte Carlo sampling", 
      "global active stress", 
      "image-based volume quantification", 
      "Robust Image-Based Estimation"
    ], 
    "name": "Robust Image-Based Estimation of Cardiac Tissue Parameters and Their Uncertainty from Noisy Data", 
    "pagination": "9-16", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006216356"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-10470-6_2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25485357"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-10470-6_2", 
      "https://app.dimensions.ai/details/publication/pub.1006216356"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_219.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-10470-6_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10470-6_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10470-6_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10470-6_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10470-6_2'


 

This table displays all metadata directly associated to this object as RDF triples.

316 TRIPLES      23 PREDICATES      129 URIs      120 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-10470-6_2 schema:about N03f79b9becd344b0bda2aba8fcffe5fc
2 N2882311dd76647caaf9780b9053c0f89
3 N2cb1a042638c4370a2ab0cfd63e3547f
4 N2e29c8ec55c04300903eb7b6168f5643
5 N408853b0a5484fd4aba239b724cb1216
6 N55bfd5ecf0684ab0a5fe3ecabdb0a1cb
7 N570b81aa8d1046eda240381a355c1910
8 N5e39aa12c73f425d8cfa20be1a5c9175
9 N627dffa2dc864048a9a453c3133ffc4c
10 N677e62e199b8416c9ce120db22e81aaa
11 N783ea9a54b964650a9e715e330f012fc
12 Nc1c2d8dd0ce84ab1b38bac73b48e4c17
13 Nf36b7a6d34fd44198488bd9517c39fcf
14 Nff256f101aab4fdb98636f0b3c1abcef
15 anzsrc-for:01
16 anzsrc-for:0104
17 anzsrc-for:08
18 anzsrc-for:0801
19 schema:author N2d607088541e45aa8dc3a30b068a41ec
20 schema:datePublished 2014
21 schema:datePublishedReg 2014-01-01
22 schema:description Clinical applications of computational cardiac models require precise personalization, i.e. fitting model parameters to capture patient’s physiology. However, due to parameter non-identifiability, limited data, uncertainty in the clinical measurements, and modeling assumptions, various combinations of parameter values may exist that yield the same quality of fit. Hence, there is a need for quantifying the uncertainty in estimated parameters and to ascertain the uniqueness of the found solution. This paper presents a stochastic method to estimate the parameters of an image-based electromechanical model of the heart and their uncertainty due to noise in measurements. First, Bayesian inference is applied to fully estimate the posterior probability density function (PDF) of the model. To that end, Markov Chain Monte Carlo sampling is used, which is made computationally tractable by employing a fast surrogate model based on Polynomial Chaos Expansion, instead of the true forward model. Then, we use the mean-shift algorithm to automatically find the modes of the PDF and select the most likely one while being robust to noise. The approach is used to estimate global active stress and passive stiffness from invasive pressure and image-based volume quantification. Experiments on eight patients showed that not only our approach yielded goodness of fits equivalent to a well-established deterministic method, but we could also demonstrate the non-uniqueness of the problem and report uncertainty estimates, crucial information for subsequent clinical assessments of the personalized models.
23 schema:editor Nd885e089a6bf4fe1aa7a5c7c505015fc
24 schema:genre chapter
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N5cdb825935854b62a13f5bb60820d845
28 schema:keywords Bayesian inference
29 Carlo sampling
30 Chain Monte Carlo sampling
31 Markov chain Monte Carlo sampling
32 Monte Carlo sampling
33 Robust Image-Based Estimation
34 active stress
35 algorithm
36 applications
37 approach
38 assessment
39 assumption
40 cardiac models
41 cardiac tissue parameters
42 chaos expansion
43 clinical applications
44 clinical assessment
45 clinical measurements
46 combination
47 computational cardiac models
48 crucial information
49 data
50 density function
51 deterministic methods
52 electromechanical model
53 end
54 estimates
55 estimation
56 expansion
57 experiments
58 fast surrogate model
59 fit
60 forward model
61 function
62 global active stress
63 goodness
64 goodness of fit
65 heart
66 image-based electromechanical model
67 image-based estimation
68 image-based volume quantification
69 inference
70 information
71 invasive pressure
72 limited data
73 mean shift algorithm
74 measurements
75 method
76 mode
77 model
78 model parameters
79 modeling assumptions
80 need
81 noise
82 noisy data
83 paper
84 parameter values
85 parameters
86 passive stiffness
87 patients
88 personalization
89 personalized model
90 physiology
91 polynomial chaos expansion
92 posterior probability density function
93 precise personalization
94 pressure
95 probability density function
96 problem
97 quality
98 quantification
99 same quality
100 sampling
101 solution
102 stiffness
103 stochastic method
104 stress
105 subsequent clinical assessment
106 surrogate model
107 tissue parameters
108 true forward model
109 uncertainty
110 uncertainty estimates
111 uniqueness
112 values
113 volume quantification
114 schema:name Robust Image-Based Estimation of Cardiac Tissue Parameters and Their Uncertainty from Noisy Data
115 schema:pagination 9-16
116 schema:productId N5492a028e6f24f90bb3feaf9a4b71d67
117 N74b78b707b504200b902ae20103cef9a
118 Nc064a0cf57374718859d848908f6d8d9
119 schema:publisher Nb9ee6cd8ff88456c93a5412cee4415fc
120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006216356
121 https://doi.org/10.1007/978-3-319-10470-6_2
122 schema:sdDatePublished 2022-01-01T19:12
123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
124 schema:sdPublisher N0dd0c04eaa3043059256ffeb7384449a
125 schema:url https://doi.org/10.1007/978-3-319-10470-6_2
126 sgo:license sg:explorer/license/
127 sgo:sdDataset chapters
128 rdf:type schema:Chapter
129 N03f79b9becd344b0bda2aba8fcffe5fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Image Interpretation, Computer-Assisted
131 rdf:type schema:DefinedTerm
132 N0dd0c04eaa3043059256ffeb7384449a schema:name Springer Nature - SN SciGraph project
133 rdf:type schema:Organization
134 N1bc94d21638e4e51b7a2df75b5b8df5c rdf:first sg:person.01173725567.20
135 rdf:rest N2e0098f25c764153952ec3f7f8c0b945
136 N1c1abf0248624fe59eba31ddeb2befd3 rdf:first sg:person.01247726200.41
137 rdf:rest N1bc94d21638e4e51b7a2df75b5b8df5c
138 N2853d58f68d546929928cae1c770dd26 rdf:first sg:person.0656777564.42
139 rdf:rest N4f7c1749586741ad820d2f6527336ed7
140 N2882311dd76647caaf9780b9053c0f89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Ventricular Dysfunction, Left
142 rdf:type schema:DefinedTerm
143 N2cb1a042638c4370a2ab0cfd63e3547f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Cardiomyopathy, Dilated
145 rdf:type schema:DefinedTerm
146 N2d607088541e45aa8dc3a30b068a41ec rdf:first sg:person.01054566020.28
147 rdf:rest N840988fe79c449b3bae6155c41745bda
148 N2dd49d46903a423981918deab19009cb rdf:first sg:person.01027273360.08
149 rdf:rest Nead70fc8bcd34ee5b9e442e1e50bb938
150 N2e0098f25c764153952ec3f7f8c0b945 rdf:first sg:person.011260235657.38
151 rdf:rest N2dd49d46903a423981918deab19009cb
152 N2e29c8ec55c04300903eb7b6168f5643 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Heart Ventricles
154 rdf:type schema:DefinedTerm
155 N35eefa5010864963a78fce175f112ece schema:familyName Howe
156 schema:givenName Robert
157 rdf:type schema:Person
158 N3761add364c24b3eb08ed57e3be9b8bf schema:familyName Hata
159 schema:givenName Nobuhiko
160 rdf:type schema:Person
161 N3f8d6742eb5d40f3b450b5251416737a rdf:first N916991a0fb1540059e91375b9eed9cfd
162 rdf:rest Ndb973627d6db47a48b86cfac724a2c76
163 N408853b0a5484fd4aba239b724cb1216 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Imaging, Three-Dimensional
165 rdf:type schema:DefinedTerm
166 N4f7c1749586741ad820d2f6527336ed7 rdf:first sg:person.01201613000.02
167 rdf:rest Ne88d691236094ad1a6acd75c2610fd6a
168 N5492a028e6f24f90bb3feaf9a4b71d67 schema:name dimensions_id
169 schema:value pub.1006216356
170 rdf:type schema:PropertyValue
171 N55bfd5ecf0684ab0a5fe3ecabdb0a1cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Sensitivity and Specificity
173 rdf:type schema:DefinedTerm
174 N570b81aa8d1046eda240381a355c1910 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Magnetic Resonance Imaging, Cine
176 rdf:type schema:DefinedTerm
177 N5cdb825935854b62a13f5bb60820d845 schema:isbn 978-3-319-10469-0
178 978-3-319-10470-6
179 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014
180 rdf:type schema:Book
181 N5e39aa12c73f425d8cfa20be1a5c9175 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Stroke Volume
183 rdf:type schema:DefinedTerm
184 N627dffa2dc864048a9a453c3133ffc4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Computer Simulation
186 rdf:type schema:DefinedTerm
187 N677e62e199b8416c9ce120db22e81aaa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Heart Conduction System
189 rdf:type schema:DefinedTerm
190 N70fdebdc76bb41b3a5a9cb748b737a8c rdf:first N3761add364c24b3eb08ed57e3be9b8bf
191 rdf:rest N3f8d6742eb5d40f3b450b5251416737a
192 N74b78b707b504200b902ae20103cef9a schema:name pubmed_id
193 schema:value 25485357
194 rdf:type schema:PropertyValue
195 N783ea9a54b964650a9e715e330f012fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Reproducibility of Results
197 rdf:type schema:DefinedTerm
198 N840988fe79c449b3bae6155c41745bda rdf:first sg:person.01217474726.73
199 rdf:rest Nb0173f882ee9435a96c05903bf6bbc78
200 N916991a0fb1540059e91375b9eed9cfd schema:familyName Barillot
201 schema:givenName Christian
202 rdf:type schema:Person
203 N9939b2507480467095cb20d6df2b75a1 rdf:first sg:person.01066111014.77
204 rdf:rest rdf:nil
205 Nb0173f882ee9435a96c05903bf6bbc78 rdf:first sg:person.0703547214.37
206 rdf:rest N2853d58f68d546929928cae1c770dd26
207 Nb9ee6cd8ff88456c93a5412cee4415fc schema:name Springer Nature
208 rdf:type schema:Organisation
209 Nc064a0cf57374718859d848908f6d8d9 schema:name doi
210 schema:value 10.1007/978-3-319-10470-6_2
211 rdf:type schema:PropertyValue
212 Nc1c2d8dd0ce84ab1b38bac73b48e4c17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
213 schema:name Models, Cardiovascular
214 rdf:type schema:DefinedTerm
215 Nd6d454c11be7498f9cdb6a110593e772 schema:familyName Hornegger
216 schema:givenName Joachim
217 rdf:type schema:Person
218 Nd885e089a6bf4fe1aa7a5c7c505015fc rdf:first Nf9720e1c4faa4d38af8a0ebf795926e9
219 rdf:rest N70fdebdc76bb41b3a5a9cb748b737a8c
220 Ndb973627d6db47a48b86cfac724a2c76 rdf:first Nd6d454c11be7498f9cdb6a110593e772
221 rdf:rest Nffb21cb5645443769799637ec0366469
222 Ne88d691236094ad1a6acd75c2610fd6a rdf:first sg:person.0644724502.05
223 rdf:rest N1c1abf0248624fe59eba31ddeb2befd3
224 Nead70fc8bcd34ee5b9e442e1e50bb938 rdf:first sg:person.01322323610.92
225 rdf:rest N9939b2507480467095cb20d6df2b75a1
226 Nf36b7a6d34fd44198488bd9517c39fcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
227 schema:name Signal-To-Noise Ratio
228 rdf:type schema:DefinedTerm
229 Nf9720e1c4faa4d38af8a0ebf795926e9 schema:familyName Golland
230 schema:givenName Polina
231 rdf:type schema:Person
232 Nff256f101aab4fdb98636f0b3c1abcef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
233 schema:name Humans
234 rdf:type schema:DefinedTerm
235 Nffb21cb5645443769799637ec0366469 rdf:first N35eefa5010864963a78fce175f112ece
236 rdf:rest rdf:nil
237 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
238 schema:name Mathematical Sciences
239 rdf:type schema:DefinedTerm
240 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
241 schema:name Statistics
242 rdf:type schema:DefinedTerm
243 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
244 schema:name Information and Computing Sciences
245 rdf:type schema:DefinedTerm
246 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
247 schema:name Artificial Intelligence and Image Processing
248 rdf:type schema:DefinedTerm
249 sg:person.01027273360.08 schema:affiliation grid-institutes:grid.5253.1
250 schema:familyName Meder
251 schema:givenName Benjamin
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027273360.08
253 rdf:type schema:Person
254 sg:person.01054566020.28 schema:affiliation grid-institutes:None
255 schema:familyName Neumann
256 schema:givenName Dominik
257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054566020.28
258 rdf:type schema:Person
259 sg:person.01066111014.77 schema:affiliation grid-institutes:None
260 schema:familyName Comaniciu
261 schema:givenName Dorin
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
263 rdf:type schema:Person
264 sg:person.011260235657.38 schema:affiliation grid-institutes:grid.5253.1
265 schema:familyName Katus
266 schema:givenName Hugo
267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011260235657.38
268 rdf:type schema:Person
269 sg:person.01173725567.20 schema:affiliation grid-institutes:grid.5253.1
270 schema:familyName Haas
271 schema:givenName Jan
272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173725567.20
273 rdf:type schema:Person
274 sg:person.01201613000.02 schema:affiliation grid-institutes:grid.5253.1
275 schema:familyName Kayvanpour
276 schema:givenName Elham
277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201613000.02
278 rdf:type schema:Person
279 sg:person.01217474726.73 schema:affiliation grid-institutes:None
280 schema:familyName Mansi
281 schema:givenName Tommaso
282 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73
283 rdf:type schema:Person
284 sg:person.01247726200.41 schema:affiliation grid-institutes:grid.5253.1
285 schema:familyName Sedaghat-Hamedani
286 schema:givenName Farbod
287 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247726200.41
288 rdf:type schema:Person
289 sg:person.01322323610.92 schema:affiliation grid-institutes:None
290 schema:familyName Hornegger
291 schema:givenName Joachim
292 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322323610.92
293 rdf:type schema:Person
294 sg:person.0644724502.05 schema:affiliation grid-institutes:grid.5253.1
295 schema:familyName Amr
296 schema:givenName Ali
297 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644724502.05
298 rdf:type schema:Person
299 sg:person.0656777564.42 schema:affiliation grid-institutes:None
300 schema:familyName Kamen
301 schema:givenName Ali
302 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656777564.42
303 rdf:type schema:Person
304 sg:person.0703547214.37 schema:affiliation grid-institutes:None
305 schema:familyName Georgescu
306 schema:givenName Bogdan
307 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
308 rdf:type schema:Person
309 grid-institutes:None schema:alternateName Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA
310 Pattern Recognition Lab, FAU Erlangen-Nürnberg, Germany
311 schema:name Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA
312 Pattern Recognition Lab, FAU Erlangen-Nürnberg, Germany
313 rdf:type schema:Organization
314 grid-institutes:grid.5253.1 schema:alternateName Department of Internal Medicine III, University Hospital Heidelberg, Germany
315 schema:name Department of Internal Medicine III, University Hospital Heidelberg, Germany
316 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...