Ontology type: schema:Chapter Open Access: True
2014
AUTHORSDominik Neumann , Tommaso Mansi , Bogdan Georgescu , Ali Kamen , Elham Kayvanpour , Ali Amr , Farbod Sedaghat-Hamedani , Jan Haas , Hugo Katus , Benjamin Meder , Joachim Hornegger , Dorin Comaniciu
ABSTRACTClinical applications of computational cardiac models require precise personalization, i.e. fitting model parameters to capture patient’s physiology. However, due to parameter non-identifiability, limited data, uncertainty in the clinical measurements, and modeling assumptions, various combinations of parameter values may exist that yield the same quality of fit. Hence, there is a need for quantifying the uncertainty in estimated parameters and to ascertain the uniqueness of the found solution. This paper presents a stochastic method to estimate the parameters of an image-based electromechanical model of the heart and their uncertainty due to noise in measurements. First, Bayesian inference is applied to fully estimate the posterior probability density function (PDF) of the model. To that end, Markov Chain Monte Carlo sampling is used, which is made computationally tractable by employing a fast surrogate model based on Polynomial Chaos Expansion, instead of the true forward model. Then, we use the mean-shift algorithm to automatically find the modes of the PDF and select the most likely one while being robust to noise. The approach is used to estimate global active stress and passive stiffness from invasive pressure and image-based volume quantification. Experiments on eight patients showed that not only our approach yielded goodness of fits equivalent to a well-established deterministic method, but we could also demonstrate the non-uniqueness of the problem and report uncertainty estimates, crucial information for subsequent clinical assessments of the personalized models. More... »
PAGES9-16
Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014
ISBN
978-3-319-10469-0
978-3-319-10470-6
http://scigraph.springernature.com/pub.10.1007/978-3-319-10470-6_2
DOIhttp://dx.doi.org/10.1007/978-3-319-10470-6_2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1006216356
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/25485357
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cardiomyopathy, Dilated",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Computer Simulation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Heart Conduction System",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Heart Ventricles",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Image Interpretation, Computer-Assisted",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Imaging, Three-Dimensional",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Magnetic Resonance Imaging, Cine",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Models, Cardiovascular",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Reproducibility of Results",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Sensitivity and Specificity",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Signal-To-Noise Ratio",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Stroke Volume",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Ventricular Dysfunction, Left",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Pattern Recognition Lab, FAU Erlangen-N\u00fcrnberg, Germany",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA",
"Pattern Recognition Lab, FAU Erlangen-N\u00fcrnberg, Germany"
],
"type": "Organization"
},
"familyName": "Neumann",
"givenName": "Dominik",
"id": "sg:person.01054566020.28",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054566020.28"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
],
"type": "Organization"
},
"familyName": "Mansi",
"givenName": "Tommaso",
"id": "sg:person.01217474726.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
],
"type": "Organization"
},
"familyName": "Georgescu",
"givenName": "Bogdan",
"id": "sg:person.0703547214.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
],
"type": "Organization"
},
"familyName": "Kamen",
"givenName": "Ali",
"id": "sg:person.0656777564.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656777564.42"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Internal Medicine III, University Hospital Heidelberg, Germany",
"id": "http://www.grid.ac/institutes/grid.5253.1",
"name": [
"Department of Internal Medicine III, University Hospital Heidelberg, Germany"
],
"type": "Organization"
},
"familyName": "Kayvanpour",
"givenName": "Elham",
"id": "sg:person.01201613000.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201613000.02"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Internal Medicine III, University Hospital Heidelberg, Germany",
"id": "http://www.grid.ac/institutes/grid.5253.1",
"name": [
"Department of Internal Medicine III, University Hospital Heidelberg, Germany"
],
"type": "Organization"
},
"familyName": "Amr",
"givenName": "Ali",
"id": "sg:person.0644724502.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644724502.05"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Internal Medicine III, University Hospital Heidelberg, Germany",
"id": "http://www.grid.ac/institutes/grid.5253.1",
"name": [
"Department of Internal Medicine III, University Hospital Heidelberg, Germany"
],
"type": "Organization"
},
"familyName": "Sedaghat-Hamedani",
"givenName": "Farbod",
"id": "sg:person.01247726200.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247726200.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Internal Medicine III, University Hospital Heidelberg, Germany",
"id": "http://www.grid.ac/institutes/grid.5253.1",
"name": [
"Department of Internal Medicine III, University Hospital Heidelberg, Germany"
],
"type": "Organization"
},
"familyName": "Haas",
"givenName": "Jan",
"id": "sg:person.01173725567.20",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173725567.20"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Internal Medicine III, University Hospital Heidelberg, Germany",
"id": "http://www.grid.ac/institutes/grid.5253.1",
"name": [
"Department of Internal Medicine III, University Hospital Heidelberg, Germany"
],
"type": "Organization"
},
"familyName": "Katus",
"givenName": "Hugo",
"id": "sg:person.011260235657.38",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011260235657.38"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Internal Medicine III, University Hospital Heidelberg, Germany",
"id": "http://www.grid.ac/institutes/grid.5253.1",
"name": [
"Department of Internal Medicine III, University Hospital Heidelberg, Germany"
],
"type": "Organization"
},
"familyName": "Meder",
"givenName": "Benjamin",
"id": "sg:person.01027273360.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027273360.08"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Pattern Recognition Lab, FAU Erlangen-N\u00fcrnberg, Germany",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Pattern Recognition Lab, FAU Erlangen-N\u00fcrnberg, Germany"
],
"type": "Organization"
},
"familyName": "Hornegger",
"givenName": "Joachim",
"id": "sg:person.01322323610.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322323610.92"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
],
"type": "Organization"
},
"familyName": "Comaniciu",
"givenName": "Dorin",
"id": "sg:person.01066111014.77",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
],
"type": "Person"
}
],
"datePublished": "2014",
"datePublishedReg": "2014-01-01",
"description": "Clinical applications of computational cardiac models require precise personalization, i.e.\u00a0fitting model parameters to capture patient\u2019s physiology. However, due to parameter non-identifiability, limited data, uncertainty in the clinical measurements, and modeling assumptions, various combinations of parameter values may exist that yield the same quality of fit. Hence, there is a need for quantifying the uncertainty in estimated parameters and to ascertain the uniqueness of the found solution. This paper presents a stochastic method to estimate the parameters of an image-based electromechanical model of the heart and their uncertainty due to noise in measurements. First, Bayesian inference is applied to fully estimate the posterior probability density function (PDF) of the model. To that end, Markov Chain Monte Carlo sampling is used, which is made computationally tractable by employing a fast surrogate model based on Polynomial Chaos Expansion, instead of the true forward model. Then, we use the mean-shift algorithm to automatically find the modes of the PDF and select the most likely one while being robust to noise. The approach is used to estimate global active stress and passive stiffness from invasive pressure and image-based volume quantification. Experiments on eight patients showed that not only our approach yielded goodness of fits equivalent to a well-established deterministic method, but we could also demonstrate the non-uniqueness of the problem and report uncertainty estimates, crucial information for subsequent clinical assessments of the personalized models.",
"editor": [
{
"familyName": "Golland",
"givenName": "Polina",
"type": "Person"
},
{
"familyName": "Hata",
"givenName": "Nobuhiko",
"type": "Person"
},
{
"familyName": "Barillot",
"givenName": "Christian",
"type": "Person"
},
{
"familyName": "Hornegger",
"givenName": "Joachim",
"type": "Person"
},
{
"familyName": "Howe",
"givenName": "Robert",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-10470-6_2",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-319-10469-0",
"978-3-319-10470-6"
],
"name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2014",
"type": "Book"
},
"keywords": [
"posterior probability density function",
"Markov chain Monte Carlo sampling",
"polynomial chaos expansion",
"fast surrogate model",
"Monte Carlo sampling",
"true forward model",
"probability density function",
"chaos expansion",
"stochastic method",
"Carlo sampling",
"surrogate model",
"Bayesian inference",
"deterministic methods",
"density function",
"goodness of fit",
"noisy data",
"computational cardiac models",
"model parameters",
"electromechanical model",
"parameter values",
"modeling assumptions",
"forward model",
"uncertainty estimates",
"cardiac tissue parameters",
"mean shift algorithm",
"precise personalization",
"uncertainty",
"cardiac models",
"parameters",
"noise",
"model",
"uniqueness",
"personalized model",
"fit",
"inference",
"estimation",
"goodness",
"algorithm",
"active stress",
"tissue parameters",
"same quality",
"problem",
"solution",
"assumption",
"approach",
"estimates",
"measurements",
"crucial information",
"applications",
"function",
"expansion",
"sampling",
"mode",
"data",
"experiments",
"values",
"stiffness",
"invasive pressure",
"subsequent clinical assessment",
"image-based estimation",
"information",
"combination",
"quantification",
"end",
"limited data",
"quality",
"pressure",
"clinical measurements",
"stress",
"volume quantification",
"need",
"assessment",
"personalization",
"heart",
"clinical application",
"passive stiffness",
"physiology",
"method",
"paper",
"clinical assessment",
"patients"
],
"name": "Robust Image-Based Estimation of Cardiac Tissue Parameters and Their Uncertainty from Noisy Data",
"pagination": "9-16",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1006216356"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-10470-6_2"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"25485357"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-10470-6_2",
"https://app.dimensions.ai/details/publication/pub.1006216356"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:48",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_432.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-10470-6_2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10470-6_2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10470-6_2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10470-6_2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10470-6_2'
This table displays all metadata directly associated to this object as RDF triples.
311 TRIPLES
23 PREDICATES
124 URIs
115 LITERALS
22 BLANK NODES