2D View Aggregation for Lymph Node Detection Using a Shallow Hierarchy of Linear Classifiers View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Ari Seff , Le Lu , Kevin M. Cherry , Holger R. Roth , Jiamin Liu , Shijun Wang , Joanne Hoffman , Evrim B. Turkbey , Ronald M. Summers

ABSTRACT

Enlarged lymph nodes (LNs) can provide important information for cancer diagnosis, staging, and measuring treatment reactions, making automated detection a highly sought goal. In this paper, we propose a new algorithm representation of decomposing the LN detection problem into a set of 2D object detection subtasks on sampled CT slices, largely alleviating the curse of dimensionality issue. Our 2D detection can be effectively formulated as linear classification on a single image feature type of Histogram of Oriented Gradients (HOG), covering a moderate field-of-view of 45 by 45 voxels. We exploit both max-pooling and sparse linear fusion schemes to aggregate these 2D detection scores for the final 3D LN detection. In this manner, detection is more tractable and does not need to perform perfectly at instance level (as weak hypotheses) since our aggregation process will robustly harness collective information for LN detection. Two datasets (90 patients with 389 mediastinal LNs and 86 patients with 595 abdominal LNs) are used for validation. Cross-validation demonstrates 78.0% sensitivity at 6 false positives/volume (FP/vol.) (86.1% at 10 FP/vol.) and 73.1% sensitivity at 6 FP/vol. (87.2% at 10 FP/vol.), for the mediastinal and abdominal datasets respectively. Our results compare favorably to previous state-of-the-art methods. More... »

PAGES

544-552

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-10404-1_68

DOI

http://dx.doi.org/10.1007/978-3-319-10404-1_68

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044639080

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25333161


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymph Nodes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphatic Metastasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seff", 
        "givenName": "Ari", 
        "id": "sg:person.01074657212.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074657212.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Le", 
        "id": "sg:person.01353423536.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cherry", 
        "givenName": "Kevin M.", 
        "id": "sg:person.01142772412.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142772412.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roth", 
        "givenName": "Holger R.", 
        "id": "sg:person.01331447262.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331447262.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jiamin", 
        "id": "sg:person.012244440547.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012244440547.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Shijun", 
        "id": "sg:person.01274114051.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274114051.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoffman", 
        "givenName": "Joanne", 
        "id": "sg:person.01211105612.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211105612.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turkbey", 
        "givenName": "Evrim B.", 
        "id": "sg:person.01337446221.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337446221.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Summers", 
        "givenName": "Ronald M.", 
        "id": "sg:person.011331054577.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.media.2011.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005034623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.811101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008191642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-75759-7_41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010096496", 
          "https://doi.org/10.1007/978-3-540-75759-7_41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-75759-7_41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010096496", 
          "https://doi.org/10.1007/978-3-540-75759-7_41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2012.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011379533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2012.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011379533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1961189.1961199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013637525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1873951.1874249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013699282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10404-1_65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024028888", 
          "https://doi.org/10.1007/978-3-319-10404-1_65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10404-1_65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024028888", 
          "https://doi.org/10.1007/978-3-319-10404-1_65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10404-1_65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024028888", 
          "https://doi.org/10.1007/978-3-319-10404-1_65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10404-1_65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024028888", 
          "https://doi.org/10.1007/978-3-319-10404-1_65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10404-1_65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024028888", 
          "https://doi.org/10.1007/978-3-319-10404-1_65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2008.10.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026558254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1390156.1390258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035863056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2008282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043330079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2011.2168234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2009.167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093997066"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Enlarged lymph nodes (LNs) can provide important information for cancer diagnosis, staging, and measuring treatment reactions, making automated detection a highly sought goal. In this paper, we propose a new algorithm representation of decomposing the LN detection problem into a set of 2D object detection subtasks on sampled CT slices, largely alleviating the curse of dimensionality issue. Our 2D detection can be effectively formulated as linear classification on a single image feature type of Histogram of Oriented Gradients (HOG), covering a moderate field-of-view of 45 by 45 voxels. We exploit both max-pooling and sparse linear fusion schemes to aggregate these 2D detection scores for the final 3D LN detection. In this manner, detection is more tractable and does not need to perform perfectly at instance level (as weak hypotheses) since our aggregation process will robustly harness collective information for LN detection. Two datasets (90 patients with 389 mediastinal LNs and 86 patients with 595 abdominal LNs) are used for validation. Cross-validation demonstrates 78.0% sensitivity at 6 false positives/volume (FP/vol.) (86.1% at 10 FP/vol.) and 73.1% sensitivity at 6 FP/vol. (87.2% at 10 FP/vol.), for the mediastinal and abdominal datasets respectively. Our results compare favorably to previous state-of-the-art methods.", 
    "editor": [
      {
        "familyName": "Golland", 
        "givenName": "Polina", 
        "type": "Person"
      }, 
      {
        "familyName": "Hata", 
        "givenName": "Nobuhiko", 
        "type": "Person"
      }, 
      {
        "familyName": "Barillot", 
        "givenName": "Christian", 
        "type": "Person"
      }, 
      {
        "familyName": "Hornegger", 
        "givenName": "Joachim", 
        "type": "Person"
      }, 
      {
        "familyName": "Howe", 
        "givenName": "Robert", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-10404-1_68", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4055703", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-319-10403-4", 
        "978-3-319-10404-1"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2014", 
      "type": "Book"
    }, 
    "name": "2D View Aggregation for Lymph Node Detection Using a Shallow Hierarchy of Linear Classifiers", 
    "pagination": "544-552", 
    "productId": [
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25333161"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044639080"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-10404-1_68"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d4a20e4df4ccbbe5d1c65db55f9eddd5c842cacee95e95fca4c556e5d54a0b9a"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-10404-1_68", 
      "https://app.dimensions.ai/details/publication/pub.1044639080"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130797_00000004.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-10404-1_68"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10404-1_68'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10404-1_68'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10404-1_68'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10404-1_68'


 

This table displays all metadata directly associated to this object as RDF triples.

248 TRIPLES      23 PREDICATES      56 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-10404-1_68 schema:about N0424fb92934b472f9d63615ef7e40ebb
2 N1432eec0dee14928ac861b036f9dc9af
3 N26db95dceb0e40949dfed1fc8b4e3d97
4 N2903cabc50724fcf8ace8b0c88bd9704
5 N3b5468f5c6394cfd947bc8dcfdd0e7d8
6 N707881d019174db68e478ca226176a96
7 N7893f7f043b14795b99f555508638a35
8 N7a17bb9233144ab48e7b1a1a2559b309
9 Na9531e6c98bc47159559e3e020aee01f
10 Nb661b810b6694a64b356a5ec1faf019e
11 Nb8e58a6b96b84837a156dc2f16c5c634
12 Nc53127879a5c4d82869571f7661da021
13 Nc63e6c9ceaea41ff87bc8b1b0392a5bd
14 Nea312f93bc034ad49f59e8a722f9edc8
15 anzsrc-for:08
16 anzsrc-for:0801
17 schema:author Nb2ebf7ea75714fb0b034a659c1ee11d4
18 schema:citation sg:pub.10.1007/978-3-319-10404-1_65
19 sg:pub.10.1007/978-3-540-75759-7_41
20 sg:pub.10.1023/a:1010933404324
21 https://doi.org/10.1016/j.ejca.2008.10.026
22 https://doi.org/10.1016/j.media.2011.05.005
23 https://doi.org/10.1016/j.media.2012.11.001
24 https://doi.org/10.1109/cvpr.2005.177
25 https://doi.org/10.1109/tmi.2011.2168234
26 https://doi.org/10.1109/tpami.2009.167
27 https://doi.org/10.1117/12.2008282
28 https://doi.org/10.1117/12.811101
29 https://doi.org/10.1145/1390156.1390258
30 https://doi.org/10.1145/1873951.1874249
31 https://doi.org/10.1145/1961189.1961199
32 schema:datePublished 2014
33 schema:datePublishedReg 2014-01-01
34 schema:description Enlarged lymph nodes (LNs) can provide important information for cancer diagnosis, staging, and measuring treatment reactions, making automated detection a highly sought goal. In this paper, we propose a new algorithm representation of decomposing the LN detection problem into a set of 2D object detection subtasks on sampled CT slices, largely alleviating the curse of dimensionality issue. Our 2D detection can be effectively formulated as linear classification on a single image feature type of Histogram of Oriented Gradients (HOG), covering a moderate field-of-view of 45 by 45 voxels. We exploit both max-pooling and sparse linear fusion schemes to aggregate these 2D detection scores for the final 3D LN detection. In this manner, detection is more tractable and does not need to perform perfectly at instance level (as weak hypotheses) since our aggregation process will robustly harness collective information for LN detection. Two datasets (90 patients with 389 mediastinal LNs and 86 patients with 595 abdominal LNs) are used for validation. Cross-validation demonstrates 78.0% sensitivity at 6 false positives/volume (FP/vol.) (86.1% at 10 FP/vol.) and 73.1% sensitivity at 6 FP/vol. (87.2% at 10 FP/vol.), for the mediastinal and abdominal datasets respectively. Our results compare favorably to previous state-of-the-art methods.
35 schema:editor N5140aba185c14483832772aa79db629f
36 schema:genre chapter
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N989f8797272f41d4bff8fd4e1795615b
40 schema:name 2D View Aggregation for Lymph Node Detection Using a Shallow Hierarchy of Linear Classifiers
41 schema:pagination 544-552
42 schema:productId N12092ffb4c014712ae9262fa9678ee4a
43 N2162d83bfdde4580a8adb3bfd9e279bc
44 Ne946835bfefd48729ca3260738d8e320
45 Nf44ab518af534de9b81389f1f69f94f9
46 schema:publisher Nb905953bbd29439a9093b976e8dbd757
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044639080
48 https://doi.org/10.1007/978-3-319-10404-1_68
49 schema:sdDatePublished 2019-04-16T09:12
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N95e661c5ae3c43d09e0989699b884e40
52 schema:url https://link.springer.com/10.1007%2F978-3-319-10404-1_68
53 sgo:license sg:explorer/license/
54 sgo:sdDataset chapters
55 rdf:type schema:Chapter
56 N0170ba4a77e24aa893134782ece78924 rdf:first sg:person.01337446221.97
57 rdf:rest N64b382f85b77478e91d4afadefaf358e
58 N0424fb92934b472f9d63615ef7e40ebb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Reproducibility of Results
60 rdf:type schema:DefinedTerm
61 N12092ffb4c014712ae9262fa9678ee4a schema:name dimensions_id
62 schema:value pub.1044639080
63 rdf:type schema:PropertyValue
64 N1432eec0dee14928ac861b036f9dc9af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Tomography, X-Ray Computed
66 rdf:type schema:DefinedTerm
67 N195c74dca08e48778be025276044a53a rdf:first sg:person.01211105612.27
68 rdf:rest N0170ba4a77e24aa893134782ece78924
69 N2162d83bfdde4580a8adb3bfd9e279bc schema:name pubmed_id
70 schema:value 25333161
71 rdf:type schema:PropertyValue
72 N26db95dceb0e40949dfed1fc8b4e3d97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Algorithms
74 rdf:type schema:DefinedTerm
75 N2903cabc50724fcf8ace8b0c88bd9704 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Humans
77 rdf:type schema:DefinedTerm
78 N323fa05318a843a3894ddaf3302b5138 rdf:first Nf53700c19b6643a8abbca9688cbe2e9e
79 rdf:rest Naace756771bf4e5b914d70e272ef79e4
80 N3b5468f5c6394cfd947bc8dcfdd0e7d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Radiographic Image Enhancement
82 rdf:type schema:DefinedTerm
83 N40780f724ad04e80b440bf5a302cbcd2 schema:familyName Hornegger
84 schema:givenName Joachim
85 rdf:type schema:Person
86 N483b88a904e64cc3871799ba9885c70a rdf:first sg:person.01331447262.96
87 rdf:rest N9fead1077248403ba5b85ce8785eee3d
88 N4b05468e29e24586835e9c70266065a9 schema:familyName Howe
89 schema:givenName Robert
90 rdf:type schema:Person
91 N5140aba185c14483832772aa79db629f rdf:first N9e578d6ed5a6444995b8532733fc6d56
92 rdf:rest Na2275209c1ca448bb1adf7152bcc04cc
93 N64b382f85b77478e91d4afadefaf358e rdf:first sg:person.011331054577.30
94 rdf:rest rdf:nil
95 N707881d019174db68e478ca226176a96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Radiographic Image Interpretation, Computer-Assisted
97 rdf:type schema:DefinedTerm
98 N77ca79b925fb4b51b28ba792734e943f schema:familyName Hata
99 schema:givenName Nobuhiko
100 rdf:type schema:Person
101 N7893f7f043b14795b99f555508638a35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Pattern Recognition, Automated
103 rdf:type schema:DefinedTerm
104 N7a17bb9233144ab48e7b1a1a2559b309 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Imaging, Three-Dimensional
106 rdf:type schema:DefinedTerm
107 N95e661c5ae3c43d09e0989699b884e40 schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 N989f8797272f41d4bff8fd4e1795615b schema:isbn 978-3-319-10403-4
110 978-3-319-10404-1
111 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014
112 rdf:type schema:Book
113 N9e578d6ed5a6444995b8532733fc6d56 schema:familyName Golland
114 schema:givenName Polina
115 rdf:type schema:Person
116 N9fead1077248403ba5b85ce8785eee3d rdf:first sg:person.012244440547.42
117 rdf:rest Na6cb2e2f37864b8cb22c13d470f441d3
118 Na2275209c1ca448bb1adf7152bcc04cc rdf:first N77ca79b925fb4b51b28ba792734e943f
119 rdf:rest N323fa05318a843a3894ddaf3302b5138
120 Na6cb2e2f37864b8cb22c13d470f441d3 rdf:first sg:person.01274114051.58
121 rdf:rest N195c74dca08e48778be025276044a53a
122 Na9531e6c98bc47159559e3e020aee01f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Lymphatic Metastasis
124 rdf:type schema:DefinedTerm
125 Naace756771bf4e5b914d70e272ef79e4 rdf:first N40780f724ad04e80b440bf5a302cbcd2
126 rdf:rest Nfde53743998847df871f0e6b20330c97
127 Nb2ebf7ea75714fb0b034a659c1ee11d4 rdf:first sg:person.01074657212.43
128 rdf:rest Nce0047dba4904839855b1c2674d39523
129 Nb661b810b6694a64b356a5ec1faf019e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Computer Simulation
131 rdf:type schema:DefinedTerm
132 Nb72795f2a911419f8730c27bbe785a7b rdf:first sg:person.01142772412.85
133 rdf:rest N483b88a904e64cc3871799ba9885c70a
134 Nb8e58a6b96b84837a156dc2f16c5c634 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Artificial Intelligence
136 rdf:type schema:DefinedTerm
137 Nb905953bbd29439a9093b976e8dbd757 schema:location Cham
138 schema:name Springer International Publishing
139 rdf:type schema:Organisation
140 Nc53127879a5c4d82869571f7661da021 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Lymph Nodes
142 rdf:type schema:DefinedTerm
143 Nc63e6c9ceaea41ff87bc8b1b0392a5bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Linear Models
145 rdf:type schema:DefinedTerm
146 Nce0047dba4904839855b1c2674d39523 rdf:first sg:person.01353423536.73
147 rdf:rest Nb72795f2a911419f8730c27bbe785a7b
148 Ne946835bfefd48729ca3260738d8e320 schema:name doi
149 schema:value 10.1007/978-3-319-10404-1_68
150 rdf:type schema:PropertyValue
151 Nea312f93bc034ad49f59e8a722f9edc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Sensitivity and Specificity
153 rdf:type schema:DefinedTerm
154 Nf44ab518af534de9b81389f1f69f94f9 schema:name readcube_id
155 schema:value d4a20e4df4ccbbe5d1c65db55f9eddd5c842cacee95e95fca4c556e5d54a0b9a
156 rdf:type schema:PropertyValue
157 Nf53700c19b6643a8abbca9688cbe2e9e schema:familyName Barillot
158 schema:givenName Christian
159 rdf:type schema:Person
160 Nfde53743998847df871f0e6b20330c97 rdf:first N4b05468e29e24586835e9c70266065a9
161 rdf:rest rdf:nil
162 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
163 schema:name Information and Computing Sciences
164 rdf:type schema:DefinedTerm
165 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
166 schema:name Artificial Intelligence and Image Processing
167 rdf:type schema:DefinedTerm
168 sg:grant.4055703 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-10404-1_68
169 rdf:type schema:MonetaryGrant
170 sg:person.01074657212.43 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
171 schema:familyName Seff
172 schema:givenName Ari
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074657212.43
174 rdf:type schema:Person
175 sg:person.011331054577.30 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
176 schema:familyName Summers
177 schema:givenName Ronald M.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30
179 rdf:type schema:Person
180 sg:person.01142772412.85 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
181 schema:familyName Cherry
182 schema:givenName Kevin M.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142772412.85
184 rdf:type schema:Person
185 sg:person.01211105612.27 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
186 schema:familyName Hoffman
187 schema:givenName Joanne
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211105612.27
189 rdf:type schema:Person
190 sg:person.012244440547.42 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
191 schema:familyName Liu
192 schema:givenName Jiamin
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012244440547.42
194 rdf:type schema:Person
195 sg:person.01274114051.58 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
196 schema:familyName Wang
197 schema:givenName Shijun
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274114051.58
199 rdf:type schema:Person
200 sg:person.01331447262.96 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
201 schema:familyName Roth
202 schema:givenName Holger R.
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331447262.96
204 rdf:type schema:Person
205 sg:person.01337446221.97 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
206 schema:familyName Turkbey
207 schema:givenName Evrim B.
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337446221.97
209 rdf:type schema:Person
210 sg:person.01353423536.73 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
211 schema:familyName Lu
212 schema:givenName Le
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73
214 rdf:type schema:Person
215 sg:pub.10.1007/978-3-319-10404-1_65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024028888
216 https://doi.org/10.1007/978-3-319-10404-1_65
217 rdf:type schema:CreativeWork
218 sg:pub.10.1007/978-3-540-75759-7_41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010096496
219 https://doi.org/10.1007/978-3-540-75759-7_41
220 rdf:type schema:CreativeWork
221 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
222 https://doi.org/10.1023/a:1010933404324
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.ejca.2008.10.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026558254
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.media.2011.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005034623
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.media.2012.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011379533
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1109/cvpr.2005.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093997066
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1109/tmi.2011.2168234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695796
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1109/tpami.2009.167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743745
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1117/12.2008282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043330079
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1117/12.811101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008191642
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1145/1390156.1390258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035863056
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1145/1873951.1874249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013699282
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1145/1961189.1961199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013637525
245 rdf:type schema:CreativeWork
246 https://www.grid.ac/institutes/grid.410305.3 schema:alternateName National Institutes of Health Clinical Center
247 schema:name Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892, Bethesda, MD, USA
248 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...