A New 2.5D Representation for Lymph Node Detection Using Random Sets of Deep Convolutional Neural Network Observations View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Holger R. Roth , Le Lu , Ari Seff , Kevin M. Cherry , Joanne Hoffman , Shijun Wang , Jiamin Liu , Evrim Turkbey , Ronald M. Summers

ABSTRACT

Automated Lymph Node (LN) detection is an important clinical diagnostic task but very challenging due to the low contrast of surrounding structures in Computed Tomography (CT) and to their varying sizes, poses, shapes and sparsely distributed locations. State-of-the-art studies show the performance range of 52.9% sensitivity at 3.1 false-positives per volume (FP/vol.), or 60.9% at 6.1 FP/vol. for mediastinal LN, by one-shot boosting on 3D HAAR features. In this paper, we first operate a preliminary candidate generation stage, towards -100% sensitivity at the cost of high FP levels (-40 per patient), to harvest volumes of interest (VOI). Our 2.5D approach consequently decomposes any 3D VOI by resampling 2D reformatted orthogonal views N times, via scale, random translations, and rotations with respect to the VOI centroid coordinates. These random views are then used to train a deep Convolutional Neural Network (CNN) classifier. In testing, the CNN is employed to assign LN probabilities for all N random views that can be simply averaged (as a set) to compute the final classification probability per VOI. We validate the approach on two datasets: 90 CT volumes with 388 mediastinal LNs and 86 patients with 595 abdominal LNs. We achieve sensitivities of 70%/83% at 3 FP/vol. and 84%/90% at 6 FP/vol. in mediastinum and abdomen respectively, which drastically improves over the previous state-of-the-art work. More... »

PAGES

520-527

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-10404-1_65

DOI

http://dx.doi.org/10.1007/978-3-319-10404-1_65

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024028888

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25333158


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymph Nodes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphatic Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks (Computer)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892-1182, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roth", 
        "givenName": "Holger R.", 
        "id": "sg:person.01331447262.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331447262.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892-1182, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Le", 
        "id": "sg:person.01353423536.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892-1182, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seff", 
        "givenName": "Ari", 
        "id": "sg:person.01074657212.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074657212.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892-1182, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cherry", 
        "givenName": "Kevin M.", 
        "id": "sg:person.01142772412.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142772412.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892-1182, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoffman", 
        "givenName": "Joanne", 
        "id": "sg:person.01211105612.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211105612.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892-1182, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Shijun", 
        "id": "sg:person.01274114051.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274114051.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892-1182, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jiamin", 
        "id": "sg:person.012244440547.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012244440547.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892-1182, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turkbey", 
        "givenName": "Evrim", 
        "id": "sg:person.01337446221.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337446221.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892-1182, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Summers", 
        "givenName": "Ronald M.", 
        "id": "sg:person.011331054577.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.media.2011.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005034623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.811101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008191642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-40763-5_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010477884", 
          "https://doi.org/10.1007/978-3-642-40763-5_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2012.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011379533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2012.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011379533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-40763-5_51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014968475", 
          "https://doi.org/10.1007/978-3-642-40763-5_51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2043737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019559519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/92.3.205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032301848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2009.10-08-881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033296596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2008282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043330079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10404-1_68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044639080", 
          "https://doi.org/10.1007/978-3-319-10404-1_68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10404-1_68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044639080", 
          "https://doi.org/10.1007/978-3-319-10404-1_68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10404-1_68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044639080", 
          "https://doi.org/10.1007/978-3-319-10404-1_68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10404-1_68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044639080", 
          "https://doi.org/10.1007/978-3-319-10404-1_68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10404-1_68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044639080", 
          "https://doi.org/10.1007/978-3-319-10404-1_68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.974920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061171112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2011.2168234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695796"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Automated Lymph Node (LN) detection is an important clinical diagnostic task but very challenging due to the low contrast of surrounding structures in Computed Tomography (CT) and to their varying sizes, poses, shapes and sparsely distributed locations. State-of-the-art studies show the performance range of 52.9% sensitivity at 3.1 false-positives per volume (FP/vol.), or 60.9% at 6.1 FP/vol. for mediastinal LN, by one-shot boosting on 3D HAAR features. In this paper, we first operate a preliminary candidate generation stage, towards -100% sensitivity at the cost of high FP levels (-40 per patient), to harvest volumes of interest (VOI). Our 2.5D approach consequently decomposes any 3D VOI by resampling 2D reformatted orthogonal views N times, via scale, random translations, and rotations with respect to the VOI centroid coordinates. These random views are then used to train a deep Convolutional Neural Network (CNN) classifier. In testing, the CNN is employed to assign LN probabilities for all N random views that can be simply averaged (as a set) to compute the final classification probability per VOI. We validate the approach on two datasets: 90 CT volumes with 388 mediastinal LNs and 86 patients with 595 abdominal LNs. We achieve sensitivities of 70%/83% at 3 FP/vol. and 84%/90% at 6 FP/vol. in mediastinum and abdomen respectively, which drastically improves over the previous state-of-the-art work.", 
    "editor": [
      {
        "familyName": "Golland", 
        "givenName": "Polina", 
        "type": "Person"
      }, 
      {
        "familyName": "Hata", 
        "givenName": "Nobuhiko", 
        "type": "Person"
      }, 
      {
        "familyName": "Barillot", 
        "givenName": "Christian", 
        "type": "Person"
      }, 
      {
        "familyName": "Hornegger", 
        "givenName": "Joachim", 
        "type": "Person"
      }, 
      {
        "familyName": "Howe", 
        "givenName": "Robert", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-10404-1_65", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4055703", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-319-10403-4", 
        "978-3-319-10404-1"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2014", 
      "type": "Book"
    }, 
    "name": "A New 2.5D Representation for Lymph Node Detection Using Random Sets of Deep Convolutional Neural Network Observations", 
    "pagination": "520-527", 
    "productId": [
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25333158"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024028888"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-10404-1_65"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "727a5ba3136056b448b611d5293605f2ec1765332c48e8518db06a14f4ba507e"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-10404-1_65", 
      "https://app.dimensions.ai/details/publication/pub.1024028888"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130793_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-10404-1_65"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10404-1_65'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10404-1_65'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10404-1_65'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10404-1_65'


 

This table displays all metadata directly associated to this object as RDF triples.

242 TRIPLES      23 PREDICATES      54 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-10404-1_65 schema:about N00ed06ce951a4c49a91e4ac2d4c68f9d
2 N05fdf371201d4b09aac38602fd467e35
3 N22e12a0420c842b1afc60452f373237d
4 N42f4689226ee4c03886876a138afdd68
5 N4bce9152cc8242bfab6dbc2dbb43a21a
6 N510e80eda8b349309e7334938efee1b6
7 N555e0e1c10de46a0aa41141ab49b5a26
8 N76ce23a07e734c67ad0efc32ab096daa
9 Naee0ff1d5f02499abc170e63720d9aff
10 Nb88ac03f72804a1eb3b6e3828be6333e
11 Neb0e92ef76b94cd68da85492939f8507
12 Nee1042875b8240d19cb32728ded54d96
13 Nf732061aba964245b9cb22eeece91c43
14 Nf8662f7c63974bd4a5c19d7e808de017
15 anzsrc-for:08
16 anzsrc-for:0801
17 schema:author N1dfd23e2940d49dabc4543c45f074637
18 schema:citation sg:pub.10.1007/978-3-319-10404-1_68
19 sg:pub.10.1007/978-3-642-40763-5_31
20 sg:pub.10.1007/978-3-642-40763-5_51
21 https://doi.org/10.1016/j.media.2011.05.005
22 https://doi.org/10.1016/j.media.2012.11.001
23 https://doi.org/10.1093/jnci/92.3.205
24 https://doi.org/10.1109/42.974920
25 https://doi.org/10.1109/tmi.2011.2168234
26 https://doi.org/10.1117/12.2008282
27 https://doi.org/10.1117/12.2043737
28 https://doi.org/10.1117/12.811101
29 https://doi.org/10.1162/neco.2009.10-08-881
30 schema:datePublished 2014
31 schema:datePublishedReg 2014-01-01
32 schema:description Automated Lymph Node (LN) detection is an important clinical diagnostic task but very challenging due to the low contrast of surrounding structures in Computed Tomography (CT) and to their varying sizes, poses, shapes and sparsely distributed locations. State-of-the-art studies show the performance range of 52.9% sensitivity at 3.1 false-positives per volume (FP/vol.), or 60.9% at 6.1 FP/vol. for mediastinal LN, by one-shot boosting on 3D HAAR features. In this paper, we first operate a preliminary candidate generation stage, towards -100% sensitivity at the cost of high FP levels (-40 per patient), to harvest volumes of interest (VOI). Our 2.5D approach consequently decomposes any 3D VOI by resampling 2D reformatted orthogonal views N times, via scale, random translations, and rotations with respect to the VOI centroid coordinates. These random views are then used to train a deep Convolutional Neural Network (CNN) classifier. In testing, the CNN is employed to assign LN probabilities for all N random views that can be simply averaged (as a set) to compute the final classification probability per VOI. We validate the approach on two datasets: 90 CT volumes with 388 mediastinal LNs and 86 patients with 595 abdominal LNs. We achieve sensitivities of 70%/83% at 3 FP/vol. and 84%/90% at 6 FP/vol. in mediastinum and abdomen respectively, which drastically improves over the previous state-of-the-art work.
33 schema:editor Nc7dbc7724c034be48bbd1fdb9940627d
34 schema:genre chapter
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf Nca205b59cfd04099b6b4abb16b44fa19
38 schema:name A New 2.5D Representation for Lymph Node Detection Using Random Sets of Deep Convolutional Neural Network Observations
39 schema:pagination 520-527
40 schema:productId N3a43a9bad01d4b33abebf4d41d8f527d
41 N85fff495a8464b9fb8830bde2d8d92b0
42 Nbed72b5b34b94111873e678b1b7c434c
43 Nc8b211323e1d42eab58e6b386e45beba
44 schema:publisher N51a3e40491144f2c888445b4906f5637
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024028888
46 https://doi.org/10.1007/978-3-319-10404-1_65
47 schema:sdDatePublished 2019-04-16T09:10
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N7f52f83435514125b8d3de14d9dbe857
50 schema:url https://link.springer.com/10.1007%2F978-3-319-10404-1_65
51 sgo:license sg:explorer/license/
52 sgo:sdDataset chapters
53 rdf:type schema:Chapter
54 N00ed06ce951a4c49a91e4ac2d4c68f9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
55 schema:name Reproducibility of Results
56 rdf:type schema:DefinedTerm
57 N05fdf371201d4b09aac38602fd467e35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Data Interpretation, Statistical
59 rdf:type schema:DefinedTerm
60 N0c792028b2084d61a0cb15f29ded199c rdf:first sg:person.01353423536.73
61 rdf:rest N6b5751da319d4a09a4d750f758da65d9
62 N12fc2c06993e49da9d29ba536e73486b rdf:first N6db4576501ec49a8907a107f54d6ea2c
63 rdf:rest Ne7a4e65a31db4a819f1697f661512906
64 N18a09528a4c441cfbc483e8dc796ad4b schema:familyName Hornegger
65 schema:givenName Joachim
66 rdf:type schema:Person
67 N1c0eac60b12e4f3ba5f9258f91584765 rdf:first sg:person.012244440547.42
68 rdf:rest Nf11b742ad26b4853bb3b8ee1ace945ed
69 N1dfd23e2940d49dabc4543c45f074637 rdf:first sg:person.01331447262.96
70 rdf:rest N0c792028b2084d61a0cb15f29ded199c
71 N1e1fcfe5da4f44748f284f3d54cc0baa schema:familyName Hata
72 schema:givenName Nobuhiko
73 rdf:type schema:Person
74 N22e12a0420c842b1afc60452f373237d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Computer Simulation
76 rdf:type schema:DefinedTerm
77 N3a43a9bad01d4b33abebf4d41d8f527d schema:name pubmed_id
78 schema:value 25333158
79 rdf:type schema:PropertyValue
80 N42f4689226ee4c03886876a138afdd68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Algorithms
82 rdf:type schema:DefinedTerm
83 N4bce9152cc8242bfab6dbc2dbb43a21a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Pattern Recognition, Automated
85 rdf:type schema:DefinedTerm
86 N510e80eda8b349309e7334938efee1b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Lymphatic Diseases
88 rdf:type schema:DefinedTerm
89 N51a3e40491144f2c888445b4906f5637 schema:location Cham
90 schema:name Springer International Publishing
91 rdf:type schema:Organisation
92 N555e0e1c10de46a0aa41141ab49b5a26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Humans
94 rdf:type schema:DefinedTerm
95 N6401b5e90db140efbf623c1fc16aed76 rdf:first sg:person.01274114051.58
96 rdf:rest N1c0eac60b12e4f3ba5f9258f91584765
97 N6b5751da319d4a09a4d750f758da65d9 rdf:first sg:person.01074657212.43
98 rdf:rest N6f6616c218614c4fa74b2c6418fa1556
99 N6cdde99a9bb84923b86fd80f67ee06d8 schema:familyName Golland
100 schema:givenName Polina
101 rdf:type schema:Person
102 N6db4576501ec49a8907a107f54d6ea2c schema:familyName Barillot
103 schema:givenName Christian
104 rdf:type schema:Person
105 N6f6616c218614c4fa74b2c6418fa1556 rdf:first sg:person.01142772412.85
106 rdf:rest N800b856643c147b3a4c53ace41ee1402
107 N76ce23a07e734c67ad0efc32ab096daa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Lymph Nodes
109 rdf:type schema:DefinedTerm
110 N7e6e14c019864182892e78535c0c5c14 rdf:first Ne82e49494314442185dd72806c067a5d
111 rdf:rest rdf:nil
112 N7f52f83435514125b8d3de14d9dbe857 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 N800b856643c147b3a4c53ace41ee1402 rdf:first sg:person.01211105612.27
115 rdf:rest N6401b5e90db140efbf623c1fc16aed76
116 N85fff495a8464b9fb8830bde2d8d92b0 schema:name dimensions_id
117 schema:value pub.1024028888
118 rdf:type schema:PropertyValue
119 N9c59064f6d674ee19e9bb9d4b8fd7e52 rdf:first sg:person.011331054577.30
120 rdf:rest rdf:nil
121 Na9a58c623f154f42a3cba60483c7d2c2 rdf:first N1e1fcfe5da4f44748f284f3d54cc0baa
122 rdf:rest N12fc2c06993e49da9d29ba536e73486b
123 Naee0ff1d5f02499abc170e63720d9aff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Radiographic Image Interpretation, Computer-Assisted
125 rdf:type schema:DefinedTerm
126 Nb88ac03f72804a1eb3b6e3828be6333e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Models, Statistical
128 rdf:type schema:DefinedTerm
129 Nbed72b5b34b94111873e678b1b7c434c schema:name readcube_id
130 schema:value 727a5ba3136056b448b611d5293605f2ec1765332c48e8518db06a14f4ba507e
131 rdf:type schema:PropertyValue
132 Nc7dbc7724c034be48bbd1fdb9940627d rdf:first N6cdde99a9bb84923b86fd80f67ee06d8
133 rdf:rest Na9a58c623f154f42a3cba60483c7d2c2
134 Nc8b211323e1d42eab58e6b386e45beba schema:name doi
135 schema:value 10.1007/978-3-319-10404-1_65
136 rdf:type schema:PropertyValue
137 Nca205b59cfd04099b6b4abb16b44fa19 schema:isbn 978-3-319-10403-4
138 978-3-319-10404-1
139 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014
140 rdf:type schema:Book
141 Ne7a4e65a31db4a819f1697f661512906 rdf:first N18a09528a4c441cfbc483e8dc796ad4b
142 rdf:rest N7e6e14c019864182892e78535c0c5c14
143 Ne82e49494314442185dd72806c067a5d schema:familyName Howe
144 schema:givenName Robert
145 rdf:type schema:Person
146 Neb0e92ef76b94cd68da85492939f8507 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Neural Networks (Computer)
148 rdf:type schema:DefinedTerm
149 Nee1042875b8240d19cb32728ded54d96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Radiographic Image Enhancement
151 rdf:type schema:DefinedTerm
152 Nf11b742ad26b4853bb3b8ee1ace945ed rdf:first sg:person.01337446221.97
153 rdf:rest N9c59064f6d674ee19e9bb9d4b8fd7e52
154 Nf732061aba964245b9cb22eeece91c43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Sensitivity and Specificity
156 rdf:type schema:DefinedTerm
157 Nf8662f7c63974bd4a5c19d7e808de017 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Imaging, Three-Dimensional
159 rdf:type schema:DefinedTerm
160 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
161 schema:name Information and Computing Sciences
162 rdf:type schema:DefinedTerm
163 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
164 schema:name Artificial Intelligence and Image Processing
165 rdf:type schema:DefinedTerm
166 sg:grant.4055703 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-10404-1_65
167 rdf:type schema:MonetaryGrant
168 sg:person.01074657212.43 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
169 schema:familyName Seff
170 schema:givenName Ari
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074657212.43
172 rdf:type schema:Person
173 sg:person.011331054577.30 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
174 schema:familyName Summers
175 schema:givenName Ronald M.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30
177 rdf:type schema:Person
178 sg:person.01142772412.85 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
179 schema:familyName Cherry
180 schema:givenName Kevin M.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142772412.85
182 rdf:type schema:Person
183 sg:person.01211105612.27 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
184 schema:familyName Hoffman
185 schema:givenName Joanne
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211105612.27
187 rdf:type schema:Person
188 sg:person.012244440547.42 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
189 schema:familyName Liu
190 schema:givenName Jiamin
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012244440547.42
192 rdf:type schema:Person
193 sg:person.01274114051.58 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
194 schema:familyName Wang
195 schema:givenName Shijun
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274114051.58
197 rdf:type schema:Person
198 sg:person.01331447262.96 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
199 schema:familyName Roth
200 schema:givenName Holger R.
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331447262.96
202 rdf:type schema:Person
203 sg:person.01337446221.97 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
204 schema:familyName Turkbey
205 schema:givenName Evrim
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337446221.97
207 rdf:type schema:Person
208 sg:person.01353423536.73 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
209 schema:familyName Lu
210 schema:givenName Le
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73
212 rdf:type schema:Person
213 sg:pub.10.1007/978-3-319-10404-1_68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044639080
214 https://doi.org/10.1007/978-3-319-10404-1_68
215 rdf:type schema:CreativeWork
216 sg:pub.10.1007/978-3-642-40763-5_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010477884
217 https://doi.org/10.1007/978-3-642-40763-5_31
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/978-3-642-40763-5_51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014968475
220 https://doi.org/10.1007/978-3-642-40763-5_51
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.media.2011.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005034623
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.media.2012.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011379533
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/jnci/92.3.205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032301848
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1109/42.974920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171112
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1109/tmi.2011.2168234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695796
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1117/12.2008282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043330079
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1117/12.2043737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019559519
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1117/12.811101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008191642
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1162/neco.2009.10-08-881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033296596
239 rdf:type schema:CreativeWork
240 https://www.grid.ac/institutes/grid.410305.3 schema:alternateName National Institutes of Health Clinical Center
241 schema:name Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892-1182, Bethesda, MD, USA
242 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...