A New 2.5D Representation for Lymph Node Detection Using Random Sets of Deep Convolutional Neural Network Observations View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Holger R. Roth , Le Lu , Ari Seff , Kevin M. Cherry , Joanne Hoffman , Shijun Wang , Jiamin Liu , Evrim Turkbey , Ronald M. Summers

ABSTRACT

Automated Lymph Node (LN) detection is an important clinical diagnostic task but very challenging due to the low contrast of surrounding structures in Computed Tomography (CT) and to their varying sizes, poses, shapes and sparsely distributed locations. State-of-the-art studies show the performance range of 52.9% sensitivity at 3.1 false-positives per volume (FP/vol.), or 60.9% at 6.1 FP/vol. for mediastinal LN, by one-shot boosting on 3D HAAR features. In this paper, we first operate a preliminary candidate generation stage, towards -100% sensitivity at the cost of high FP levels (-40 per patient), to harvest volumes of interest (VOI). Our 2.5D approach consequently decomposes any 3D VOI by resampling 2D reformatted orthogonal views N times, via scale, random translations, and rotations with respect to the VOI centroid coordinates. These random views are then used to train a deep Convolutional Neural Network (CNN) classifier. In testing, the CNN is employed to assign LN probabilities for all N random views that can be simply averaged (as a set) to compute the final classification probability per VOI. We validate the approach on two datasets: 90 CT volumes with 388 mediastinal LNs and 86 patients with 595 abdominal LNs. We achieve sensitivities of 70%/83% at 3 FP/vol. and 84%/90% at 6 FP/vol. in mediastinum and abdomen respectively, which drastically improves over the previous state-of-the-art work. More... »

PAGES

520-527

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-10404-1_65

DOI

http://dx.doi.org/10.1007/978-3-319-10404-1_65

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024028888

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25333158


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymph Nodes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphatic Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks (Computer)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892-1182, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roth", 
        "givenName": "Holger R.", 
        "id": "sg:person.01331447262.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331447262.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892-1182, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Le", 
        "id": "sg:person.01353423536.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892-1182, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seff", 
        "givenName": "Ari", 
        "id": "sg:person.01074657212.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074657212.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892-1182, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cherry", 
        "givenName": "Kevin M.", 
        "id": "sg:person.01142772412.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142772412.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892-1182, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoffman", 
        "givenName": "Joanne", 
        "id": "sg:person.01211105612.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211105612.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892-1182, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Shijun", 
        "id": "sg:person.01274114051.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274114051.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892-1182, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jiamin", 
        "id": "sg:person.012244440547.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012244440547.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892-1182, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turkbey", 
        "givenName": "Evrim", 
        "id": "sg:person.01337446221.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337446221.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892-1182, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Summers", 
        "givenName": "Ronald M.", 
        "id": "sg:person.011331054577.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.media.2011.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005034623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.811101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008191642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-40763-5_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010477884", 
          "https://doi.org/10.1007/978-3-642-40763-5_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2012.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011379533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2012.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011379533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-40763-5_51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014968475", 
          "https://doi.org/10.1007/978-3-642-40763-5_51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2043737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019559519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/92.3.205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032301848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2009.10-08-881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033296596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2008282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043330079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10404-1_68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044639080", 
          "https://doi.org/10.1007/978-3-319-10404-1_68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10404-1_68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044639080", 
          "https://doi.org/10.1007/978-3-319-10404-1_68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10404-1_68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044639080", 
          "https://doi.org/10.1007/978-3-319-10404-1_68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10404-1_68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044639080", 
          "https://doi.org/10.1007/978-3-319-10404-1_68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10404-1_68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044639080", 
          "https://doi.org/10.1007/978-3-319-10404-1_68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.974920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061171112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2011.2168234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695796"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Automated Lymph Node (LN) detection is an important clinical diagnostic task but very challenging due to the low contrast of surrounding structures in Computed Tomography (CT) and to their varying sizes, poses, shapes and sparsely distributed locations. State-of-the-art studies show the performance range of 52.9% sensitivity at 3.1 false-positives per volume (FP/vol.), or 60.9% at 6.1 FP/vol. for mediastinal LN, by one-shot boosting on 3D HAAR features. In this paper, we first operate a preliminary candidate generation stage, towards -100% sensitivity at the cost of high FP levels (-40 per patient), to harvest volumes of interest (VOI). Our 2.5D approach consequently decomposes any 3D VOI by resampling 2D reformatted orthogonal views N times, via scale, random translations, and rotations with respect to the VOI centroid coordinates. These random views are then used to train a deep Convolutional Neural Network (CNN) classifier. In testing, the CNN is employed to assign LN probabilities for all N random views that can be simply averaged (as a set) to compute the final classification probability per VOI. We validate the approach on two datasets: 90 CT volumes with 388 mediastinal LNs and 86 patients with 595 abdominal LNs. We achieve sensitivities of 70%/83% at 3 FP/vol. and 84%/90% at 6 FP/vol. in mediastinum and abdomen respectively, which drastically improves over the previous state-of-the-art work.", 
    "editor": [
      {
        "familyName": "Golland", 
        "givenName": "Polina", 
        "type": "Person"
      }, 
      {
        "familyName": "Hata", 
        "givenName": "Nobuhiko", 
        "type": "Person"
      }, 
      {
        "familyName": "Barillot", 
        "givenName": "Christian", 
        "type": "Person"
      }, 
      {
        "familyName": "Hornegger", 
        "givenName": "Joachim", 
        "type": "Person"
      }, 
      {
        "familyName": "Howe", 
        "givenName": "Robert", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-10404-1_65", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4055703", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-319-10403-4", 
        "978-3-319-10404-1"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2014", 
      "type": "Book"
    }, 
    "name": "A New 2.5D Representation for Lymph Node Detection Using Random Sets of Deep Convolutional Neural Network Observations", 
    "pagination": "520-527", 
    "productId": [
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25333158"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024028888"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-10404-1_65"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "727a5ba3136056b448b611d5293605f2ec1765332c48e8518db06a14f4ba507e"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-10404-1_65", 
      "https://app.dimensions.ai/details/publication/pub.1024028888"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130793_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-10404-1_65"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10404-1_65'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10404-1_65'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10404-1_65'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10404-1_65'


 

This table displays all metadata directly associated to this object as RDF triples.

242 TRIPLES      23 PREDICATES      54 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-10404-1_65 schema:about N04344245c88b4e15b7a12677b7656c3d
2 N3203765e8bbd4113be434ff608b18f2a
3 N3f28c22355644248b47fc1c3ec3f5ee9
4 N41bdb0abf213474ab0ab3d18846c4920
5 N4ac8ac601dfd47c3bbdc8e0288277269
6 N4b4ee948cc0a40ad86dff6b8c9c977c6
7 N50830739eafd471d881e08c3c2814a0b
8 N57b8c299ff654432998278d7ce31faf0
9 N66e727f993cd4bba9b42b9a18e77fdff
10 N6d0df4d58f5347948dd34ea285b2dd75
11 N8c282bd5f65f4fcd95d6eeef135f4f76
12 Nb822b3a65bfb4aaab42100c2f4a46828
13 Nba99f5851cc44986823cac13a1405682
14 Nfe7ceac30c564828bbdd8abb5423a2c4
15 anzsrc-for:08
16 anzsrc-for:0801
17 schema:author N4e0e7930ae50477f96512171fe90319e
18 schema:citation sg:pub.10.1007/978-3-319-10404-1_68
19 sg:pub.10.1007/978-3-642-40763-5_31
20 sg:pub.10.1007/978-3-642-40763-5_51
21 https://doi.org/10.1016/j.media.2011.05.005
22 https://doi.org/10.1016/j.media.2012.11.001
23 https://doi.org/10.1093/jnci/92.3.205
24 https://doi.org/10.1109/42.974920
25 https://doi.org/10.1109/tmi.2011.2168234
26 https://doi.org/10.1117/12.2008282
27 https://doi.org/10.1117/12.2043737
28 https://doi.org/10.1117/12.811101
29 https://doi.org/10.1162/neco.2009.10-08-881
30 schema:datePublished 2014
31 schema:datePublishedReg 2014-01-01
32 schema:description Automated Lymph Node (LN) detection is an important clinical diagnostic task but very challenging due to the low contrast of surrounding structures in Computed Tomography (CT) and to their varying sizes, poses, shapes and sparsely distributed locations. State-of-the-art studies show the performance range of 52.9% sensitivity at 3.1 false-positives per volume (FP/vol.), or 60.9% at 6.1 FP/vol. for mediastinal LN, by one-shot boosting on 3D HAAR features. In this paper, we first operate a preliminary candidate generation stage, towards -100% sensitivity at the cost of high FP levels (-40 per patient), to harvest volumes of interest (VOI). Our 2.5D approach consequently decomposes any 3D VOI by resampling 2D reformatted orthogonal views N times, via scale, random translations, and rotations with respect to the VOI centroid coordinates. These random views are then used to train a deep Convolutional Neural Network (CNN) classifier. In testing, the CNN is employed to assign LN probabilities for all N random views that can be simply averaged (as a set) to compute the final classification probability per VOI. We validate the approach on two datasets: 90 CT volumes with 388 mediastinal LNs and 86 patients with 595 abdominal LNs. We achieve sensitivities of 70%/83% at 3 FP/vol. and 84%/90% at 6 FP/vol. in mediastinum and abdomen respectively, which drastically improves over the previous state-of-the-art work.
33 schema:editor Nf2485f5418de4ea0b2f647d2c6ea3c8e
34 schema:genre chapter
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N610e49922063415f90989637ce88d542
38 schema:name A New 2.5D Representation for Lymph Node Detection Using Random Sets of Deep Convolutional Neural Network Observations
39 schema:pagination 520-527
40 schema:productId N5654898642094b458d9a9dda3eb03516
41 Na81c7f20dd0047878221d8d6cf116a0b
42 Nabb9b68886a74991bf2ed363fba7ba11
43 Ne6860c564c9b4a0eac0f351ed2366487
44 schema:publisher N2236ad1a74d84fc1b74c4696f1b94529
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024028888
46 https://doi.org/10.1007/978-3-319-10404-1_65
47 schema:sdDatePublished 2019-04-16T09:10
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nd3018649392048afb9f3a3e369259312
50 schema:url https://link.springer.com/10.1007%2F978-3-319-10404-1_65
51 sgo:license sg:explorer/license/
52 sgo:sdDataset chapters
53 rdf:type schema:Chapter
54 N04344245c88b4e15b7a12677b7656c3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
55 schema:name Data Interpretation, Statistical
56 rdf:type schema:DefinedTerm
57 N1d60529fb540438c9a5db6adaaedf4c9 rdf:first sg:person.01211105612.27
58 rdf:rest N2c34ae8395aa45bd854dd834ef17adae
59 N2236ad1a74d84fc1b74c4696f1b94529 schema:location Cham
60 schema:name Springer International Publishing
61 rdf:type schema:Organisation
62 N2c34ae8395aa45bd854dd834ef17adae rdf:first sg:person.01274114051.58
63 rdf:rest N6636005ca2fd48d6aa95a1b769033a06
64 N3203765e8bbd4113be434ff608b18f2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Humans
66 rdf:type schema:DefinedTerm
67 N3f28c22355644248b47fc1c3ec3f5ee9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Reproducibility of Results
69 rdf:type schema:DefinedTerm
70 N41bdb0abf213474ab0ab3d18846c4920 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Pattern Recognition, Automated
72 rdf:type schema:DefinedTerm
73 N4ac8ac601dfd47c3bbdc8e0288277269 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Imaging, Three-Dimensional
75 rdf:type schema:DefinedTerm
76 N4b4ee948cc0a40ad86dff6b8c9c977c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Models, Statistical
78 rdf:type schema:DefinedTerm
79 N4e0e7930ae50477f96512171fe90319e rdf:first sg:person.01331447262.96
80 rdf:rest Nfb4ade724e5941dd9da7e91862c46cdf
81 N50830739eafd471d881e08c3c2814a0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Radiographic Image Interpretation, Computer-Assisted
83 rdf:type schema:DefinedTerm
84 N5654898642094b458d9a9dda3eb03516 schema:name pubmed_id
85 schema:value 25333158
86 rdf:type schema:PropertyValue
87 N57b8c299ff654432998278d7ce31faf0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Lymph Nodes
89 rdf:type schema:DefinedTerm
90 N610e49922063415f90989637ce88d542 schema:isbn 978-3-319-10403-4
91 978-3-319-10404-1
92 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014
93 rdf:type schema:Book
94 N64aae651989745ee80c30834390b08f2 rdf:first Ne19c69d5b6964c34991d593a2291dfeb
95 rdf:rest rdf:nil
96 N6526fca22b0548b1b2f139e26d0a0230 rdf:first sg:person.011331054577.30
97 rdf:rest rdf:nil
98 N6636005ca2fd48d6aa95a1b769033a06 rdf:first sg:person.012244440547.42
99 rdf:rest Ne541e583029b4478942dc197f94e883a
100 N66e727f993cd4bba9b42b9a18e77fdff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Algorithms
102 rdf:type schema:DefinedTerm
103 N6d0df4d58f5347948dd34ea285b2dd75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Neural Networks (Computer)
105 rdf:type schema:DefinedTerm
106 N890485aaa88f403e90719267234b9a51 rdf:first Nd0b477a025884384962b76c0cfe2a954
107 rdf:rest Nb659f9ca5a9f4ca7973afabd891e73ac
108 N8c282bd5f65f4fcd95d6eeef135f4f76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Sensitivity and Specificity
110 rdf:type schema:DefinedTerm
111 Na81c7f20dd0047878221d8d6cf116a0b schema:name doi
112 schema:value 10.1007/978-3-319-10404-1_65
113 rdf:type schema:PropertyValue
114 Nabb9b68886a74991bf2ed363fba7ba11 schema:name readcube_id
115 schema:value 727a5ba3136056b448b611d5293605f2ec1765332c48e8518db06a14f4ba507e
116 rdf:type schema:PropertyValue
117 Nb659f9ca5a9f4ca7973afabd891e73ac rdf:first Nddb84266b07b441b93750ccdca5b695f
118 rdf:rest Nf20b0929893144879865c4015e2c746a
119 Nb822b3a65bfb4aaab42100c2f4a46828 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Computer Simulation
121 rdf:type schema:DefinedTerm
122 Nba99f5851cc44986823cac13a1405682 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Lymphatic Diseases
124 rdf:type schema:DefinedTerm
125 Nc6bf99f884db45f2b82038f91a3f0a6f rdf:first sg:person.01142772412.85
126 rdf:rest N1d60529fb540438c9a5db6adaaedf4c9
127 Nd0b477a025884384962b76c0cfe2a954 schema:familyName Hata
128 schema:givenName Nobuhiko
129 rdf:type schema:Person
130 Nd3018649392048afb9f3a3e369259312 schema:name Springer Nature - SN SciGraph project
131 rdf:type schema:Organization
132 Nd8be4131f41c40d78d5d304dddc1ecdd rdf:first sg:person.01074657212.43
133 rdf:rest Nc6bf99f884db45f2b82038f91a3f0a6f
134 Nddb84266b07b441b93750ccdca5b695f schema:familyName Barillot
135 schema:givenName Christian
136 rdf:type schema:Person
137 Ne19c69d5b6964c34991d593a2291dfeb schema:familyName Howe
138 schema:givenName Robert
139 rdf:type schema:Person
140 Ne214af2ad55f42e6a415bb0945dac2ee schema:familyName Hornegger
141 schema:givenName Joachim
142 rdf:type schema:Person
143 Ne541e583029b4478942dc197f94e883a rdf:first sg:person.01337446221.97
144 rdf:rest N6526fca22b0548b1b2f139e26d0a0230
145 Ne6860c564c9b4a0eac0f351ed2366487 schema:name dimensions_id
146 schema:value pub.1024028888
147 rdf:type schema:PropertyValue
148 Ne8960898902c4806a39711e8b5329ea6 schema:familyName Golland
149 schema:givenName Polina
150 rdf:type schema:Person
151 Nf20b0929893144879865c4015e2c746a rdf:first Ne214af2ad55f42e6a415bb0945dac2ee
152 rdf:rest N64aae651989745ee80c30834390b08f2
153 Nf2485f5418de4ea0b2f647d2c6ea3c8e rdf:first Ne8960898902c4806a39711e8b5329ea6
154 rdf:rest N890485aaa88f403e90719267234b9a51
155 Nfb4ade724e5941dd9da7e91862c46cdf rdf:first sg:person.01353423536.73
156 rdf:rest Nd8be4131f41c40d78d5d304dddc1ecdd
157 Nfe7ceac30c564828bbdd8abb5423a2c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Radiographic Image Enhancement
159 rdf:type schema:DefinedTerm
160 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
161 schema:name Information and Computing Sciences
162 rdf:type schema:DefinedTerm
163 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
164 schema:name Artificial Intelligence and Image Processing
165 rdf:type schema:DefinedTerm
166 sg:grant.4055703 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-10404-1_65
167 rdf:type schema:MonetaryGrant
168 sg:person.01074657212.43 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
169 schema:familyName Seff
170 schema:givenName Ari
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074657212.43
172 rdf:type schema:Person
173 sg:person.011331054577.30 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
174 schema:familyName Summers
175 schema:givenName Ronald M.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30
177 rdf:type schema:Person
178 sg:person.01142772412.85 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
179 schema:familyName Cherry
180 schema:givenName Kevin M.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142772412.85
182 rdf:type schema:Person
183 sg:person.01211105612.27 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
184 schema:familyName Hoffman
185 schema:givenName Joanne
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211105612.27
187 rdf:type schema:Person
188 sg:person.012244440547.42 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
189 schema:familyName Liu
190 schema:givenName Jiamin
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012244440547.42
192 rdf:type schema:Person
193 sg:person.01274114051.58 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
194 schema:familyName Wang
195 schema:givenName Shijun
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274114051.58
197 rdf:type schema:Person
198 sg:person.01331447262.96 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
199 schema:familyName Roth
200 schema:givenName Holger R.
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331447262.96
202 rdf:type schema:Person
203 sg:person.01337446221.97 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
204 schema:familyName Turkbey
205 schema:givenName Evrim
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337446221.97
207 rdf:type schema:Person
208 sg:person.01353423536.73 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
209 schema:familyName Lu
210 schema:givenName Le
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73
212 rdf:type schema:Person
213 sg:pub.10.1007/978-3-319-10404-1_68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044639080
214 https://doi.org/10.1007/978-3-319-10404-1_68
215 rdf:type schema:CreativeWork
216 sg:pub.10.1007/978-3-642-40763-5_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010477884
217 https://doi.org/10.1007/978-3-642-40763-5_31
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/978-3-642-40763-5_51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014968475
220 https://doi.org/10.1007/978-3-642-40763-5_51
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.media.2011.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005034623
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.media.2012.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011379533
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/jnci/92.3.205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032301848
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1109/42.974920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171112
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1109/tmi.2011.2168234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695796
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1117/12.2008282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043330079
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1117/12.2043737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019559519
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1117/12.811101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008191642
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1162/neco.2009.10-08-881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033296596
239 rdf:type schema:CreativeWork
240 https://www.grid.ac/institutes/grid.410305.3 schema:alternateName National Institutes of Health Clinical Center
241 schema:name Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, 20892-1182, Bethesda, MD, USA
242 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...