Tensor Total-Variation Regularized Deconvolution for Efficient Low-Dose CT Perfusion View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Ruogu Fang , Pina C. Sanelli , Shaoting Zhang , Tsuhan Chen

ABSTRACT

Acute brain diseases such as acute stroke and transit ischemic attacks are the leading causes of mortality and morbidity worldwide, responsible for 9% of total death every year. ‘Time is brain’ is a widely accepted concept in acute cerebrovascular disease treatment. Efficient and accurate computational framework for hemodynamic parameters estimation can save critical time for thrombolytic therapy. Meanwhile the high level of accumulated radiation dosage due to continuous image acquisition in CT perfusion (CTP) raised concerns on patient safety and public health. However, low-radiation will lead to increased noise and artifacts which require more sophisticated and time-consuming algorithms for robust estimation. We propose a novel efficient framework using tensor total-variation (TTV) regularization to achieve both high efficiency and accuracy in deconvolution for low-dose CTP. The method reduces the necessary radiation dose to only 8% of the original level and outperforms the state-of-art algorithms with estimation error reduced by 40%. It also corrects over-estimation of cerebral blood flow (CBF) and under-estimation of mean transit time (MTT), at both normal and reduced sampling rate. An efficient computational algorithm is proposed to find the solution with fast convergence. More... »

PAGES

154-161

Book

TITLE

Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014

ISBN

978-3-319-10403-4
978-3-319-10404-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-10404-1_20

DOI

http://dx.doi.org/10.1007/978-3-319-10404-1_20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049292286


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fang", 
        "givenName": "Ruogu", 
        "id": "sg:person.0725415550.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725415550.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Radiology, Weill Cornell Medical College, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanelli", 
        "givenName": "Pina C.", 
        "id": "sg:person.0600344727.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600344727.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Carolina at Charlotte", 
          "id": "https://www.grid.ac/institutes/grid.266859.6", 
          "name": [
            "Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Shaoting", 
        "id": "sg:person.01254522110.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254522110.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Tsuhan", 
        "id": "sg:person.012245072625.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012245072625.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/mrm.1910360510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002197884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a1967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004886241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12194-007-0009-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013448291", 
          "https://doi.org/10.1007/s12194-007-0009-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/56/18/011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015098803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(09)70025-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015488699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2011.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016590634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039294950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2013.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043403480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2011/467563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043512221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/54/14/013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059027715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/54/14/013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059027715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2010.2043536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr/78576048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064570192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2009.4959678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095182045"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Acute brain diseases such as acute stroke and transit ischemic attacks are the leading causes of mortality and morbidity worldwide, responsible for 9% of total death every year. \u2018Time is brain\u2019 is a widely accepted concept in acute cerebrovascular disease treatment. Efficient and accurate computational framework for hemodynamic parameters estimation can save critical time for thrombolytic therapy. Meanwhile the high level of accumulated radiation dosage due to continuous image acquisition in CT perfusion (CTP) raised concerns on patient safety and public health. However, low-radiation will lead to increased noise and artifacts which require more sophisticated and time-consuming algorithms for robust estimation. We propose a novel efficient framework using tensor total-variation (TTV) regularization to achieve both high efficiency and accuracy in deconvolution for low-dose CTP. The method reduces the necessary radiation dose to only 8% of the original level and outperforms the state-of-art algorithms with estimation error reduced by 40%. It also corrects over-estimation of cerebral blood flow (CBF) and under-estimation of mean transit time (MTT), at both normal and reduced sampling rate. An efficient computational algorithm is proposed to find the solution with fast convergence.", 
    "editor": [
      {
        "familyName": "Golland", 
        "givenName": "Polina", 
        "type": "Person"
      }, 
      {
        "familyName": "Hata", 
        "givenName": "Nobuhiko", 
        "type": "Person"
      }, 
      {
        "familyName": "Barillot", 
        "givenName": "Christian", 
        "type": "Person"
      }, 
      {
        "familyName": "Hornegger", 
        "givenName": "Joachim", 
        "type": "Person"
      }, 
      {
        "familyName": "Howe", 
        "givenName": "Robert", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-10404-1_20", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-10403-4", 
        "978-3-319-10404-1"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2014", 
      "type": "Book"
    }, 
    "name": "Tensor Total-Variation Regularized Deconvolution for Efficient Low-Dose CT Perfusion", 
    "pagination": "154-161", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-10404-1_20"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ead1c530bdafe5f04f54fdb01e02dc9baa89c7d8fbe360cebeb8cd74a7daa419"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049292286"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-10404-1_20", 
      "https://app.dimensions.ai/details/publication/pub.1049292286"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000274.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-10404-1_20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10404-1_20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10404-1_20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10404-1_20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10404-1_20'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-10404-1_20 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N3332adb0e54147a9b26c8a9ae94e6a0a
4 schema:citation sg:pub.10.1007/s12194-007-0009-7
5 https://doi.org/10.1002/mrm.10522
6 https://doi.org/10.1002/mrm.1910360510
7 https://doi.org/10.1016/j.media.2011.06.001
8 https://doi.org/10.1016/j.media.2013.02.005
9 https://doi.org/10.1016/s1474-4422(09)70025-0
10 https://doi.org/10.1088/0031-9155/54/14/013
11 https://doi.org/10.1088/0031-9155/56/18/011
12 https://doi.org/10.1109/icassp.2009.4959678
13 https://doi.org/10.1109/tmi.2010.2043536
14 https://doi.org/10.1155/2011/467563
15 https://doi.org/10.1259/bjr/78576048
16 https://doi.org/10.3174/ajnr.a1967
17 schema:datePublished 2014
18 schema:datePublishedReg 2014-01-01
19 schema:description Acute brain diseases such as acute stroke and transit ischemic attacks are the leading causes of mortality and morbidity worldwide, responsible for 9% of total death every year. ‘Time is brain’ is a widely accepted concept in acute cerebrovascular disease treatment. Efficient and accurate computational framework for hemodynamic parameters estimation can save critical time for thrombolytic therapy. Meanwhile the high level of accumulated radiation dosage due to continuous image acquisition in CT perfusion (CTP) raised concerns on patient safety and public health. However, low-radiation will lead to increased noise and artifacts which require more sophisticated and time-consuming algorithms for robust estimation. We propose a novel efficient framework using tensor total-variation (TTV) regularization to achieve both high efficiency and accuracy in deconvolution for low-dose CTP. The method reduces the necessary radiation dose to only 8% of the original level and outperforms the state-of-art algorithms with estimation error reduced by 40%. It also corrects over-estimation of cerebral blood flow (CBF) and under-estimation of mean transit time (MTT), at both normal and reduced sampling rate. An efficient computational algorithm is proposed to find the solution with fast convergence.
20 schema:editor Na02d8c748f5a433d932f1f77902661d0
21 schema:genre chapter
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf Ne6432ac2f28e4e168be77a34ced316ae
25 schema:name Tensor Total-Variation Regularized Deconvolution for Efficient Low-Dose CT Perfusion
26 schema:pagination 154-161
27 schema:productId N37150b8ecb304ed8a1aba96984527d1b
28 N67d40174623d4e84860ea5d0acc0207a
29 Ndf1bd7fa03dc49f88878cf136df7fbbe
30 schema:publisher N6a89b919eee64b7e8460cfd25b80e8cc
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049292286
32 https://doi.org/10.1007/978-3-319-10404-1_20
33 schema:sdDatePublished 2019-04-15T12:35
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N1fb097cba4e543fab5f12e9204e3d298
36 schema:url http://link.springer.com/10.1007/978-3-319-10404-1_20
37 sgo:license sg:explorer/license/
38 sgo:sdDataset chapters
39 rdf:type schema:Chapter
40 N0cdefa3beb574932bed14a6fa2a6a454 schema:familyName Golland
41 schema:givenName Polina
42 rdf:type schema:Person
43 N0ee8e08f81d549a9a2a97e9946ec1bf9 schema:familyName Hata
44 schema:givenName Nobuhiko
45 rdf:type schema:Person
46 N15a3adcb42e24e2b9d606757faa7ee9f rdf:first N0ee8e08f81d549a9a2a97e9946ec1bf9
47 rdf:rest N9ceb99e5ebe7456abb5a7e6e8300969a
48 N1f257b8f3ece4018a1498a6847bab58e schema:familyName Howe
49 schema:givenName Robert
50 rdf:type schema:Person
51 N1fb097cba4e543fab5f12e9204e3d298 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N3332adb0e54147a9b26c8a9ae94e6a0a rdf:first sg:person.0725415550.29
54 rdf:rest N81eac65cf454466dbf3d4150da54647f
55 N37150b8ecb304ed8a1aba96984527d1b schema:name readcube_id
56 schema:value ead1c530bdafe5f04f54fdb01e02dc9baa89c7d8fbe360cebeb8cd74a7daa419
57 rdf:type schema:PropertyValue
58 N388b6170ceb34398a6e33f55dd037d0c rdf:first Nef6babee87884b4fa4f1894697a4e564
59 rdf:rest N47842ea2af534ddfb1263d5b598668df
60 N47842ea2af534ddfb1263d5b598668df rdf:first N1f257b8f3ece4018a1498a6847bab58e
61 rdf:rest rdf:nil
62 N67d40174623d4e84860ea5d0acc0207a schema:name doi
63 schema:value 10.1007/978-3-319-10404-1_20
64 rdf:type schema:PropertyValue
65 N6a89b919eee64b7e8460cfd25b80e8cc schema:location Cham
66 schema:name Springer International Publishing
67 rdf:type schema:Organisation
68 N6d4bac8d05a44ca2b974600845d0262d schema:familyName Barillot
69 schema:givenName Christian
70 rdf:type schema:Person
71 N81eac65cf454466dbf3d4150da54647f rdf:first sg:person.0600344727.20
72 rdf:rest Ne6d5f0388206468bbd134209b91873f5
73 N9ceb99e5ebe7456abb5a7e6e8300969a rdf:first N6d4bac8d05a44ca2b974600845d0262d
74 rdf:rest N388b6170ceb34398a6e33f55dd037d0c
75 Na02d8c748f5a433d932f1f77902661d0 rdf:first N0cdefa3beb574932bed14a6fa2a6a454
76 rdf:rest N15a3adcb42e24e2b9d606757faa7ee9f
77 Nd1e6663bc7ae4a7f8a000b62cac02b3c rdf:first sg:person.012245072625.31
78 rdf:rest rdf:nil
79 Ndf1bd7fa03dc49f88878cf136df7fbbe schema:name dimensions_id
80 schema:value pub.1049292286
81 rdf:type schema:PropertyValue
82 Ne6432ac2f28e4e168be77a34ced316ae schema:isbn 978-3-319-10403-4
83 978-3-319-10404-1
84 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014
85 rdf:type schema:Book
86 Ne6d5f0388206468bbd134209b91873f5 rdf:first sg:person.01254522110.54
87 rdf:rest Nd1e6663bc7ae4a7f8a000b62cac02b3c
88 Nef6babee87884b4fa4f1894697a4e564 schema:familyName Hornegger
89 schema:givenName Joachim
90 rdf:type schema:Person
91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
92 schema:name Information and Computing Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
95 schema:name Artificial Intelligence and Image Processing
96 rdf:type schema:DefinedTerm
97 sg:person.012245072625.31 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
98 schema:familyName Chen
99 schema:givenName Tsuhan
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012245072625.31
101 rdf:type schema:Person
102 sg:person.01254522110.54 schema:affiliation https://www.grid.ac/institutes/grid.266859.6
103 schema:familyName Zhang
104 schema:givenName Shaoting
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254522110.54
106 rdf:type schema:Person
107 sg:person.0600344727.20 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
108 schema:familyName Sanelli
109 schema:givenName Pina C.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600344727.20
111 rdf:type schema:Person
112 sg:person.0725415550.29 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
113 schema:familyName Fang
114 schema:givenName Ruogu
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725415550.29
116 rdf:type schema:Person
117 sg:pub.10.1007/s12194-007-0009-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013448291
118 https://doi.org/10.1007/s12194-007-0009-7
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/mrm.10522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039294950
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/mrm.1910360510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002197884
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.media.2011.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016590634
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.media.2013.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043403480
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s1474-4422(09)70025-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015488699
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1088/0031-9155/54/14/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059027715
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1088/0031-9155/56/18/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015098803
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/icassp.2009.4959678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095182045
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/tmi.2010.2043536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695538
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1155/2011/467563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043512221
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1259/bjr/78576048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064570192
141 rdf:type schema:CreativeWork
142 https://doi.org/10.3174/ajnr.a1967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004886241
143 rdf:type schema:CreativeWork
144 https://www.grid.ac/institutes/grid.266859.6 schema:alternateName University of North Carolina at Charlotte
145 schema:name Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC, USA
146 rdf:type schema:Organization
147 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
148 schema:name Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
149 Department of Radiology, Weill Cornell Medical College, New York, NY, USA
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...