Stochastic 3D Models for the Micro-structure of Advanced Functional Materials View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Volker Schmidt , Gerd Gaiselmann , Ole Stenzel

ABSTRACT

Optimization of functional materials is a challenging task. Thereby, stochastic morphology models can provide helpful methods. Three classes of stochastic models are presented describing different micro-structures of functional materials by means of methods from stochastic geometry, graph theory and time series analysis. The structures of these materials strongly differ from each other, where we consider organic solar cells being an anisotropic composite of two materials, nonwoven gas-diffusion layers in proton exchange membrane fuel cells consisting of a system of curved carbon fibers, and graphite electrodes in Li-ion batteries which are built up by an isotropic two-phase system (i.e., consisting of a pore and a solid phase). The goal is to give an overview how the stochastic modeling of functional materials can be organized and to provide an outlook how these models can be used for material optimization with respect to functionality. More... »

PAGES

95-141

Book

TITLE

Stochastic Geometry, Spatial Statistics and Random Fields

ISBN

978-3-319-10063-0
978-3-319-10064-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-10064-7_4

DOI

http://dx.doi.org/10.1007/978-3-319-10064-7_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026381159


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Stochastics, Ulm University, 89069\u00a0Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Volker", 
        "id": "sg:person.01051347101.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Stochastics, Ulm University, 89069\u00a0Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaiselmann", 
        "givenName": "Gerd", 
        "id": "sg:person.014360117451.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014360117451.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Stochastics, Ulm University, 89069\u00a0Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stenzel", 
        "givenName": "Ole", 
        "id": "sg:person.0755640733.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755640733.86"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "Optimization of functional materials is a challenging task. Thereby, stochastic morphology models can provide helpful methods. Three classes of stochastic models are presented describing different micro-structures of functional materials by means of methods from stochastic geometry, graph theory and time series analysis. The structures of these materials strongly differ from each other, where we consider organic solar cells being an anisotropic composite of two materials, nonwoven gas-diffusion layers in proton exchange membrane fuel cells consisting of a system of curved carbon fibers, and graphite electrodes in Li-ion batteries which are built up by an isotropic two-phase system (i.e., consisting of a pore and a solid phase). The goal is to give an overview how the stochastic modeling of functional materials can be organized and to provide an outlook how these models can be used for material optimization with respect to functionality.", 
    "editor": [
      {
        "familyName": "Schmidt", 
        "givenName": "Volker", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-10064-7_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-10063-0", 
        "978-3-319-10064-7"
      ], 
      "name": "Stochastic Geometry, Spatial Statistics and Random Fields", 
      "type": "Book"
    }, 
    "name": "Stochastic 3D Models for the Micro-structure of Advanced Functional Materials", 
    "pagination": "95-141", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-10064-7_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7dadd272132b49ed1c101d350ebaedb5d677f7780e373eada33faa5892f4e1fd"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026381159"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-10064-7_4", 
      "https://app.dimensions.ai/details/publication/pub.1026381159"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000045.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-10064-7_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10064-7_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10064-7_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10064-7_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-10064-7_4'


 

This table displays all metadata directly associated to this object as RDF triples.

79 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-10064-7_4 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N789dda9e89e94f4a895f64d56f6b64cc
4 schema:datePublished 2015
5 schema:datePublishedReg 2015-01-01
6 schema:description Optimization of functional materials is a challenging task. Thereby, stochastic morphology models can provide helpful methods. Three classes of stochastic models are presented describing different micro-structures of functional materials by means of methods from stochastic geometry, graph theory and time series analysis. The structures of these materials strongly differ from each other, where we consider organic solar cells being an anisotropic composite of two materials, nonwoven gas-diffusion layers in proton exchange membrane fuel cells consisting of a system of curved carbon fibers, and graphite electrodes in Li-ion batteries which are built up by an isotropic two-phase system (i.e., consisting of a pore and a solid phase). The goal is to give an overview how the stochastic modeling of functional materials can be organized and to provide an outlook how these models can be used for material optimization with respect to functionality.
7 schema:editor N8f8e34f2db444110a1fd5bf12ddbc313
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ne46ac3e164d740998c3f618726465f2a
12 schema:name Stochastic 3D Models for the Micro-structure of Advanced Functional Materials
13 schema:pagination 95-141
14 schema:productId N9f625a6b27134dd582ade1911dfa2a7c
15 Na761238e7a8d4112b0af49207904529a
16 Ncc59a92c1b1e4de0b5d37333b8dc1e28
17 schema:publisher N9c59406c7c6d47e0a908532e5e3978e3
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026381159
19 https://doi.org/10.1007/978-3-319-10064-7_4
20 schema:sdDatePublished 2019-04-16T00:35
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N123756049cf54147a1a9ebf3270303ec
23 schema:url http://link.springer.com/10.1007/978-3-319-10064-7_4
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N123756049cf54147a1a9ebf3270303ec schema:name Springer Nature - SN SciGraph project
28 rdf:type schema:Organization
29 N527b514d25434a0cb0a64222d5a1c7b5 schema:familyName Schmidt
30 schema:givenName Volker
31 rdf:type schema:Person
32 N6b84de9049ba4d19aafd4488524cc240 rdf:first sg:person.0755640733.86
33 rdf:rest rdf:nil
34 N789dda9e89e94f4a895f64d56f6b64cc rdf:first sg:person.01051347101.48
35 rdf:rest Nd191add9d99c4c37bd76b8c9e2d522c2
36 N8f8e34f2db444110a1fd5bf12ddbc313 rdf:first N527b514d25434a0cb0a64222d5a1c7b5
37 rdf:rest rdf:nil
38 N9c59406c7c6d47e0a908532e5e3978e3 schema:location Cham
39 schema:name Springer International Publishing
40 rdf:type schema:Organisation
41 N9f625a6b27134dd582ade1911dfa2a7c schema:name readcube_id
42 schema:value 7dadd272132b49ed1c101d350ebaedb5d677f7780e373eada33faa5892f4e1fd
43 rdf:type schema:PropertyValue
44 Na761238e7a8d4112b0af49207904529a schema:name dimensions_id
45 schema:value pub.1026381159
46 rdf:type schema:PropertyValue
47 Ncc59a92c1b1e4de0b5d37333b8dc1e28 schema:name doi
48 schema:value 10.1007/978-3-319-10064-7_4
49 rdf:type schema:PropertyValue
50 Nd191add9d99c4c37bd76b8c9e2d522c2 rdf:first sg:person.014360117451.79
51 rdf:rest N6b84de9049ba4d19aafd4488524cc240
52 Ne46ac3e164d740998c3f618726465f2a schema:isbn 978-3-319-10063-0
53 978-3-319-10064-7
54 schema:name Stochastic Geometry, Spatial Statistics and Random Fields
55 rdf:type schema:Book
56 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
57 schema:name Engineering
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
60 schema:name Materials Engineering
61 rdf:type schema:DefinedTerm
62 sg:person.01051347101.48 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
63 schema:familyName Schmidt
64 schema:givenName Volker
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48
66 rdf:type schema:Person
67 sg:person.014360117451.79 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
68 schema:familyName Gaiselmann
69 schema:givenName Gerd
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014360117451.79
71 rdf:type schema:Person
72 sg:person.0755640733.86 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
73 schema:familyName Stenzel
74 schema:givenName Ole
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755640733.86
76 rdf:type schema:Person
77 https://www.grid.ac/institutes/grid.6582.9 schema:alternateName University of Ulm
78 schema:name Institute of Stochastics, Ulm University, 89069 Ulm, Germany
79 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...