Generative Models of Cultural Decision Making for Virtual Agents Based on User’s Reported Values View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Elnaz Nouri , David Traum

ABSTRACT

Building computational models of cultural decision making for virtual agents based on behavioral data is a challenge because finding a reasonable mapping between the statistical data and the computational model is a difficult task. This paper shows how the weights on a multi attribute utility based decision making model can be set according to the values held by people elicited through a survey. If survey data from different cultures is available then this can be done to simulate cultural decision making behavior. We used the survey data of two sets of players from US and India playing the Dictator Game and the Ultimatum Game on-line. Analyzing their reported values in the survey enabled us to set up our model’s parameters based on their culture and simulate their behavior in the Ultimatum Game. More... »

PAGES

310-315

Book

TITLE

Intelligent Virtual Agents

ISBN

978-3-319-09766-4
978-3-319-09767-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-09767-1_39

DOI

http://dx.doi.org/10.1007/978-3-319-09767-1_39

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011480626


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institute for Creative Technologies, 12015 Waterfront Dr, Playa Vista, CA\u00a090094, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nouri", 
        "givenName": "Elnaz", 
        "id": "sg:person.014772306733.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014772306733.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute for Creative Technologies, 12015 Waterfront Dr, Playa Vista, CA\u00a090094, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Traum", 
        "givenName": "David", 
        "id": "sg:person.013767173315.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013767173315.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00146-014-0570-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005536742", 
          "https://doi.org/10.1007/s00146-014-0570-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Building computational models of cultural decision making for virtual agents based on behavioral data is a challenge because finding a reasonable mapping between the statistical data and the computational model is a difficult task. This paper shows how the weights on a multi attribute utility based decision making model can be set according to the values held by people elicited through a survey. If survey data from different cultures is available then this can be done to simulate cultural decision making behavior. We used the survey data of two sets of players from US and India playing the Dictator Game and the Ultimatum Game on-line. Analyzing their reported values in the survey enabled us to set up our model\u2019s parameters based on their culture and simulate their behavior in the Ultimatum Game.", 
    "editor": [
      {
        "familyName": "Bickmore", 
        "givenName": "Timothy", 
        "type": "Person"
      }, 
      {
        "familyName": "Marsella", 
        "givenName": "Stacy", 
        "type": "Person"
      }, 
      {
        "familyName": "Sidner", 
        "givenName": "Candace", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-09767-1_39", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-09766-4", 
        "978-3-319-09767-1"
      ], 
      "name": "Intelligent Virtual Agents", 
      "type": "Book"
    }, 
    "name": "Generative Models of Cultural Decision Making for Virtual Agents Based on User\u2019s Reported Values", 
    "pagination": "310-315", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-09767-1_39"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "36b2a948084bdd617eecb9dbb13674ae56e225070a0ba5191cc01e69f2ca584f"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011480626"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-09767-1_39", 
      "https://app.dimensions.ai/details/publication/pub.1011480626"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000019.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-09767-1_39"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-09767-1_39'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-09767-1_39'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-09767-1_39'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-09767-1_39'


 

This table displays all metadata directly associated to this object as RDF triples.

87 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-09767-1_39 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N9c9bd62cb0a44961ae87a1d0fc45ae69
4 schema:citation sg:pub.10.1007/s00146-014-0570-7
5 schema:datePublished 2014
6 schema:datePublishedReg 2014-01-01
7 schema:description Building computational models of cultural decision making for virtual agents based on behavioral data is a challenge because finding a reasonable mapping between the statistical data and the computational model is a difficult task. This paper shows how the weights on a multi attribute utility based decision making model can be set according to the values held by people elicited through a survey. If survey data from different cultures is available then this can be done to simulate cultural decision making behavior. We used the survey data of two sets of players from US and India playing the Dictator Game and the Ultimatum Game on-line. Analyzing their reported values in the survey enabled us to set up our model’s parameters based on their culture and simulate their behavior in the Ultimatum Game.
8 schema:editor N3746b83e099842edbe7e40660374aaa8
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N141193a8d1774dee8a52dd6615a29a9d
13 schema:name Generative Models of Cultural Decision Making for Virtual Agents Based on User’s Reported Values
14 schema:pagination 310-315
15 schema:productId N30bcc8e2d1444061b4b4b328cf560549
16 Nc5a8095933124c34923e94893b122753
17 Nf803d5ddad554ace9ca194cec2527136
18 schema:publisher Nbb6291c39ccc4ad3b12dcd50e38b8962
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011480626
20 https://doi.org/10.1007/978-3-319-09767-1_39
21 schema:sdDatePublished 2019-04-15T19:51
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N8fad0d7dde72471fb81c60f5499e7b99
24 schema:url http://link.springer.com/10.1007/978-3-319-09767-1_39
25 sgo:license sg:explorer/license/
26 sgo:sdDataset chapters
27 rdf:type schema:Chapter
28 N0858e088c8504984b0c9df18c1fbc9ec schema:familyName Bickmore
29 schema:givenName Timothy
30 rdf:type schema:Person
31 N11da538e5f8c47c487bc3e2d09579609 schema:name Institute for Creative Technologies, 12015 Waterfront Dr, Playa Vista, CA 90094, USA
32 rdf:type schema:Organization
33 N141193a8d1774dee8a52dd6615a29a9d schema:isbn 978-3-319-09766-4
34 978-3-319-09767-1
35 schema:name Intelligent Virtual Agents
36 rdf:type schema:Book
37 N30bcc8e2d1444061b4b4b328cf560549 schema:name dimensions_id
38 schema:value pub.1011480626
39 rdf:type schema:PropertyValue
40 N3746b83e099842edbe7e40660374aaa8 rdf:first N0858e088c8504984b0c9df18c1fbc9ec
41 rdf:rest Ndd0f3e3ffcd14bb7b10019d2a703f12c
42 N6ca6f68d8c024987ad55b79dc2f5d927 schema:familyName Sidner
43 schema:givenName Candace
44 rdf:type schema:Person
45 N7083d10e9a0a4bc2aa72a0a961618b48 schema:name Institute for Creative Technologies, 12015 Waterfront Dr, Playa Vista, CA 90094, USA
46 rdf:type schema:Organization
47 N89fd46b717a948c1bb3e27d7070f5092 schema:familyName Marsella
48 schema:givenName Stacy
49 rdf:type schema:Person
50 N8fad0d7dde72471fb81c60f5499e7b99 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N9c9bd62cb0a44961ae87a1d0fc45ae69 rdf:first sg:person.014772306733.76
53 rdf:rest Na12f4ddad22c4ebd891807af289923e3
54 Na12f4ddad22c4ebd891807af289923e3 rdf:first sg:person.013767173315.17
55 rdf:rest rdf:nil
56 Nbb6291c39ccc4ad3b12dcd50e38b8962 schema:location Cham
57 schema:name Springer International Publishing
58 rdf:type schema:Organisation
59 Nc5a8095933124c34923e94893b122753 schema:name readcube_id
60 schema:value 36b2a948084bdd617eecb9dbb13674ae56e225070a0ba5191cc01e69f2ca584f
61 rdf:type schema:PropertyValue
62 Ndd0f3e3ffcd14bb7b10019d2a703f12c rdf:first N89fd46b717a948c1bb3e27d7070f5092
63 rdf:rest Nf280f3565a26423c81ceb393f8061973
64 Nf280f3565a26423c81ceb393f8061973 rdf:first N6ca6f68d8c024987ad55b79dc2f5d927
65 rdf:rest rdf:nil
66 Nf803d5ddad554ace9ca194cec2527136 schema:name doi
67 schema:value 10.1007/978-3-319-09767-1_39
68 rdf:type schema:PropertyValue
69 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
70 schema:name Information and Computing Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
73 schema:name Artificial Intelligence and Image Processing
74 rdf:type schema:DefinedTerm
75 sg:person.013767173315.17 schema:affiliation N11da538e5f8c47c487bc3e2d09579609
76 schema:familyName Traum
77 schema:givenName David
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013767173315.17
79 rdf:type schema:Person
80 sg:person.014772306733.76 schema:affiliation N7083d10e9a0a4bc2aa72a0a961618b48
81 schema:familyName Nouri
82 schema:givenName Elnaz
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014772306733.76
84 rdf:type schema:Person
85 sg:pub.10.1007/s00146-014-0570-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005536742
86 https://doi.org/10.1007/s00146-014-0570-7
87 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...