Densely Entangled Financial Systems View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014-09-06

AUTHORS

Bhaskar DasGupta , Lakshmi Kaligounder

ABSTRACT

In Zawadowski (Rev Financ Stud 26:1291–1323, 2013) introduces a banking network model in which the asset and counter-party risks are treated separately and the banks hedge their asset risks by appropriate OTC contracts. In his model, each bank has only two counter-party neighbors, a bank fails due to the counter-party risk only if at least one of its two neighbors defaults, and such a counter-party risk is a low probability event. Informally, the author shows that the banks will hedge their asset risks by appropriate OTC contracts, and, though it may be socially optimal to insure against counter-party risk, in equilibrium banks will not choose to insure this low probability event. In this paper, we consider the above model for more general network topologies, namely when each node has exactly 2r counter-party neighbors for some integer r > 0. We extend the analysis of Zawadowski (Rev Financ Stud 26:1291–1323, 2013) to show that as the number of counter-party neighbors increases the probability of counter-party risk also increases, and in particular the socially optimal solution becomes privately sustainable when each bank hedges its risk to at least n∕2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n/2$$ \end{document} banks, where n is the number of banks in the network, i.e., when 2r is at least n∕2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n/2$$ \end{document}, banks not only hedge their asset risk but also hedge its counter-party risk. More... »

PAGES

85-105

Book

TITLE

Network Models in Economics and Finance

ISBN

978-3-319-09682-7
978-3-319-09683-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-09683-4_5

DOI

http://dx.doi.org/10.1007/978-3-319-09683-4_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008656096


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Commerce, Management, Tourism and Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Banking, Finance and Investment", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Illinois at Chicago, 60607-7053, Chicago, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.185648.6", 
          "name": [
            "Department of Computer Science, University of Illinois at Chicago, 60607-7053, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "DasGupta", 
        "givenName": "Bhaskar", 
        "id": "sg:person.0763403270.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763403270.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Illinois at Chicago, 60607-7053, Chicago, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.185648.6", 
          "name": [
            "Department of Computer Science, University of Illinois at Chicago, 60607-7053, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaligounder", 
        "givenName": "Lakshmi", 
        "id": "sg:person.016141217411.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016141217411.89"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014-09-06", 
    "datePublishedReg": "2014-09-06", 
    "description": "In Zawadowski (Rev Financ Stud 26:1291\u20131323, 2013) introduces a banking network model in which the asset and counter-party risks are treated separately and the banks hedge their asset risks by appropriate OTC contracts. In\u00a0his model, each bank has only two counter-party neighbors, a bank fails due to the counter-party risk only if at least one of its two neighbors defaults, and such a counter-party risk is a low probability event. Informally, the author shows that the banks will hedge their asset risks by appropriate OTC contracts, and, though it may be socially optimal to insure against counter-party risk, in equilibrium banks will not choose to insure this low probability event. In this paper, we consider the above model for more general network topologies, namely when each node has exactly 2r counter-party neighbors for some integer r\u2009>\u20090. We extend the analysis of Zawadowski (Rev Financ Stud 26:1291\u20131323, 2013) to show that as the number of counter-party neighbors increases the probability of counter-party risk also increases, and in particular the socially optimal solution becomes privately sustainable when each bank hedges its risk to at least n\u22152\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$n/2$$\n\\end{document} banks, where n is the number of banks in the network, i.e., when 2r is at least n\u22152\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$n/2$$\n\\end{document}, banks not only hedge their asset risk but also hedge its counter-party risk.", 
    "editor": [
      {
        "familyName": "Kalyagin", 
        "givenName": "Valery A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Pardalos", 
        "givenName": "Panos M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Rassias", 
        "givenName": "Themistocles M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-09683-4_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-09682-7", 
        "978-3-319-09683-4"
      ], 
      "name": "Network Models in Economics and Finance", 
      "type": "Book"
    }, 
    "keywords": [
      "counter-party risk", 
      "asset risk", 
      "OTC contracts", 
      "low probability events", 
      "number of banks", 
      "equilibrium banks", 
      "financial system", 
      "banks", 
      "probability events", 
      "contracts", 
      "assets", 
      "default", 
      "above model", 
      "general network topologies", 
      "model", 
      "risk", 
      "optimal solution", 
      "more general network topologies", 
      "network model", 
      "probability", 
      "neighbors", 
      "network topology", 
      "authors", 
      "analysis", 
      "Zawadowski", 
      "number", 
      "topology", 
      "solution", 
      "system", 
      "network", 
      "events", 
      "nodes", 
      "paper"
    ], 
    "name": "Densely Entangled Financial Systems", 
    "pagination": "85-105", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008656096"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-09683-4_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-09683-4_5", 
      "https://app.dimensions.ai/details/publication/pub.1008656096"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_316.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-09683-4_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-09683-4_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-09683-4_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-09683-4_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-09683-4_5'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      23 PREDICATES      58 URIs      51 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-09683-4_5 schema:about anzsrc-for:15
2 anzsrc-for:1502
3 schema:author Ncd983bcc03984bc690d915325e4b9287
4 schema:datePublished 2014-09-06
5 schema:datePublishedReg 2014-09-06
6 schema:description In Zawadowski (Rev Financ Stud 26:1291–1323, 2013) introduces a banking network model in which the asset and counter-party risks are treated separately and the banks hedge their asset risks by appropriate OTC contracts. In his model, each bank has only two counter-party neighbors, a bank fails due to the counter-party risk only if at least one of its two neighbors defaults, and such a counter-party risk is a low probability event. Informally, the author shows that the banks will hedge their asset risks by appropriate OTC contracts, and, though it may be socially optimal to insure against counter-party risk, in equilibrium banks will not choose to insure this low probability event. In this paper, we consider the above model for more general network topologies, namely when each node has exactly 2r counter-party neighbors for some integer r > 0. We extend the analysis of Zawadowski (Rev Financ Stud 26:1291–1323, 2013) to show that as the number of counter-party neighbors increases the probability of counter-party risk also increases, and in particular the socially optimal solution becomes privately sustainable when each bank hedges its risk to at least n∕2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n/2$$ \end{document} banks, where n is the number of banks in the network, i.e., when 2r is at least n∕2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n/2$$ \end{document}, banks not only hedge their asset risk but also hedge its counter-party risk.
7 schema:editor N5d0d9961b8e349faa10ef054819f1d9d
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nfbedf40598a447f19df48d750d94ae36
12 schema:keywords OTC contracts
13 Zawadowski
14 above model
15 analysis
16 asset risk
17 assets
18 authors
19 banks
20 contracts
21 counter-party risk
22 default
23 equilibrium banks
24 events
25 financial system
26 general network topologies
27 low probability events
28 model
29 more general network topologies
30 neighbors
31 network
32 network model
33 network topology
34 nodes
35 number
36 number of banks
37 optimal solution
38 paper
39 probability
40 probability events
41 risk
42 solution
43 system
44 topology
45 schema:name Densely Entangled Financial Systems
46 schema:pagination 85-105
47 schema:productId N24a82fdeef0244338c6e535021885767
48 N4771f00e86b04e56bd22e02715d7fbe0
49 schema:publisher N40023980b8454da5be6c013263c42179
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008656096
51 https://doi.org/10.1007/978-3-319-09683-4_5
52 schema:sdDatePublished 2022-05-20T07:45
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N6e135ec269714402a5e97a036dba13c2
55 schema:url https://doi.org/10.1007/978-3-319-09683-4_5
56 sgo:license sg:explorer/license/
57 sgo:sdDataset chapters
58 rdf:type schema:Chapter
59 N0e8947faf8614e4897336d1292248ecf schema:familyName Kalyagin
60 schema:givenName Valery A.
61 rdf:type schema:Person
62 N0e9cede7db644da28fd7a6191b1ab9ac schema:familyName Pardalos
63 schema:givenName Panos M.
64 rdf:type schema:Person
65 N24a82fdeef0244338c6e535021885767 schema:name dimensions_id
66 schema:value pub.1008656096
67 rdf:type schema:PropertyValue
68 N40023980b8454da5be6c013263c42179 schema:name Springer Nature
69 rdf:type schema:Organisation
70 N4771f00e86b04e56bd22e02715d7fbe0 schema:name doi
71 schema:value 10.1007/978-3-319-09683-4_5
72 rdf:type schema:PropertyValue
73 N5d0d9961b8e349faa10ef054819f1d9d rdf:first N0e8947faf8614e4897336d1292248ecf
74 rdf:rest N8536ad1e81c44f9dac11e4f299b7a694
75 N6e135ec269714402a5e97a036dba13c2 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N8536ad1e81c44f9dac11e4f299b7a694 rdf:first N0e9cede7db644da28fd7a6191b1ab9ac
78 rdf:rest Ncba8224220c040228b5da0909726a91d
79 N97d68efa1ade4733b58d96773fa08085 schema:familyName Rassias
80 schema:givenName Themistocles M.
81 rdf:type schema:Person
82 Ncba8224220c040228b5da0909726a91d rdf:first N97d68efa1ade4733b58d96773fa08085
83 rdf:rest rdf:nil
84 Ncd983bcc03984bc690d915325e4b9287 rdf:first sg:person.0763403270.10
85 rdf:rest Necefc3a6353a49f2b88566ae0c7f06e7
86 Necefc3a6353a49f2b88566ae0c7f06e7 rdf:first sg:person.016141217411.89
87 rdf:rest rdf:nil
88 Nfbedf40598a447f19df48d750d94ae36 schema:isbn 978-3-319-09682-7
89 978-3-319-09683-4
90 schema:name Network Models in Economics and Finance
91 rdf:type schema:Book
92 anzsrc-for:15 schema:inDefinedTermSet anzsrc-for:
93 schema:name Commerce, Management, Tourism and Services
94 rdf:type schema:DefinedTerm
95 anzsrc-for:1502 schema:inDefinedTermSet anzsrc-for:
96 schema:name Banking, Finance and Investment
97 rdf:type schema:DefinedTerm
98 sg:person.016141217411.89 schema:affiliation grid-institutes:grid.185648.6
99 schema:familyName Kaligounder
100 schema:givenName Lakshmi
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016141217411.89
102 rdf:type schema:Person
103 sg:person.0763403270.10 schema:affiliation grid-institutes:grid.185648.6
104 schema:familyName DasGupta
105 schema:givenName Bhaskar
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763403270.10
107 rdf:type schema:Person
108 grid-institutes:grid.185648.6 schema:alternateName Department of Computer Science, University of Illinois at Chicago, 60607-7053, Chicago, IL, USA
109 schema:name Department of Computer Science, University of Illinois at Chicago, 60607-7053, Chicago, IL, USA
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...