What is Needed to Promote an Asynchronous Program Evolution in Genetic Programing? View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014-08-01

AUTHORS

Keiki Takadama , Tomohiro Harada , Hiroyuki Sato , Kiyohiko Hattori

ABSTRACT

Unlike a synchronous program evolution in the context of evolutionary computation that evolves individuals (i.e., programs) after evaluations of all individuals in each generation, this paper focuses on an asynchronous program evolution that evolves individuals during evaluations of each individual. To tackle this problem, we explore the mechanism that can promote an asynchronous program evolution by selecting a good individual without waiting for evaluations of all individuals, and investigates its effectiveness in genetic programming (GP) domain. The intensive experiments have revealed the following implications: (1) the program asynchronously evolved with the proposed mechanism can be completed with the shorter execution steps than the program asynchronously evolved without the proposed mechanism; and (2) the program asynchronously evolved with the proposed mechanism can be completed with mostly the same or shorter execution steps than the program synchronously evolved by the conventional GP. More... »

PAGES

227-241

Book

TITLE

Learning and Intelligent Optimization

ISBN

978-3-319-09583-7
978-3-319-09584-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-09584-4_22

DOI

http://dx.doi.org/10.1007/978-3-319-09584-4_22

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045577149


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The University of Electro-Communications, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.266298.1", 
          "name": [
            "The University of Electro-Communications, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takadama", 
        "givenName": "Keiki", 
        "id": "sg:person.012774267611.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012774267611.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Japan Society for the Promotion of Science DC, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "The University of Electro-Communications, Tokyo, Japan", 
            "Japan Society for the Promotion of Science DC, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harada", 
        "givenName": "Tomohiro", 
        "id": "sg:person.013014044611.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013014044611.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Electro-Communications, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.266298.1", 
          "name": [
            "The University of Electro-Communications, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sato", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.07750750604.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Electro-Communications, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.266298.1", 
          "name": [
            "The University of Electro-Communications, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hattori", 
        "givenName": "Kiyohiko", 
        "id": "sg:person.011636614777.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011636614777.06"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014-08-01", 
    "datePublishedReg": "2014-08-01", 
    "description": "Unlike a synchronous program evolution in the context of evolutionary computation that evolves individuals (i.e., programs) after evaluations of all individuals in each generation, this paper focuses on an asynchronous program evolution that evolves individuals during evaluations of each individual. To tackle this problem, we explore the mechanism that can promote an asynchronous program evolution by selecting a good individual without waiting for evaluations of all individuals, and investigates its effectiveness in genetic programming (GP) domain. The\u00a0intensive experiments have revealed the following implications: (1) the program asynchronously evolved with the proposed mechanism can be completed with the shorter execution steps than the program asynchronously evolved without the proposed mechanism; and (2) the program asynchronously evolved with the proposed mechanism can be completed with mostly the same or shorter execution steps than the program synchronously evolved by the conventional GP.", 
    "editor": [
      {
        "familyName": "Pardalos", 
        "givenName": "Panos M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Resende", 
        "givenName": "Mauricio G.C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Vogiatzis", 
        "givenName": "Chrysafis", 
        "type": "Person"
      }, 
      {
        "familyName": "Walteros", 
        "givenName": "Jose L.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-09584-4_22", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-09583-7", 
        "978-3-319-09584-4"
      ], 
      "name": "Learning and Intelligent Optimization", 
      "type": "Book"
    }, 
    "keywords": [
      "evolution", 
      "program evolution", 
      "mechanism", 
      "genetic programing", 
      "domain", 
      "individuals", 
      "evolutionary computation", 
      "best individual", 
      "execution steps", 
      "conventional GP", 
      "step", 
      "generation", 
      "experiments", 
      "following implications", 
      "implications", 
      "program", 
      "context", 
      "GPs", 
      "programing", 
      "evaluation", 
      "programming domain", 
      "intensive experiments", 
      "effectiveness", 
      "problem", 
      "paper", 
      "computation"
    ], 
    "name": "What is Needed to Promote an Asynchronous Program Evolution in Genetic Programing?", 
    "pagination": "227-241", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045577149"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-09584-4_22"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-09584-4_22", 
      "https://app.dimensions.ai/details/publication/pub.1045577149"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_393.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-09584-4_22"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-09584-4_22'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-09584-4_22'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-09584-4_22'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-09584-4_22'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      23 PREDICATES      51 URIs      44 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-09584-4_22 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N6495184e4f9f49f4b956c5fb6e166362
4 schema:datePublished 2014-08-01
5 schema:datePublishedReg 2014-08-01
6 schema:description Unlike a synchronous program evolution in the context of evolutionary computation that evolves individuals (i.e., programs) after evaluations of all individuals in each generation, this paper focuses on an asynchronous program evolution that evolves individuals during evaluations of each individual. To tackle this problem, we explore the mechanism that can promote an asynchronous program evolution by selecting a good individual without waiting for evaluations of all individuals, and investigates its effectiveness in genetic programming (GP) domain. The intensive experiments have revealed the following implications: (1) the program asynchronously evolved with the proposed mechanism can be completed with the shorter execution steps than the program asynchronously evolved without the proposed mechanism; and (2) the program asynchronously evolved with the proposed mechanism can be completed with mostly the same or shorter execution steps than the program synchronously evolved by the conventional GP.
7 schema:editor N337a6ea163e34d9791856dfb3382c5db
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Neacadeb1ae5a48eb849a0da4a50693f0
12 schema:keywords GPs
13 best individual
14 computation
15 context
16 conventional GP
17 domain
18 effectiveness
19 evaluation
20 evolution
21 evolutionary computation
22 execution steps
23 experiments
24 following implications
25 generation
26 genetic programing
27 implications
28 individuals
29 intensive experiments
30 mechanism
31 paper
32 problem
33 program
34 program evolution
35 programing
36 programming domain
37 step
38 schema:name What is Needed to Promote an Asynchronous Program Evolution in Genetic Programing?
39 schema:pagination 227-241
40 schema:productId N46790c5c8236409aaad9e2412fea3b72
41 Ndb5b698885e140ef8b5be556471fa33c
42 schema:publisher Na8809a4e3906499b90cffb7f703c1c34
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045577149
44 https://doi.org/10.1007/978-3-319-09584-4_22
45 schema:sdDatePublished 2022-05-10T10:51
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N9106942854194413966956fec6ed04b7
48 schema:url https://doi.org/10.1007/978-3-319-09584-4_22
49 sgo:license sg:explorer/license/
50 sgo:sdDataset chapters
51 rdf:type schema:Chapter
52 N337a6ea163e34d9791856dfb3382c5db rdf:first Ne1b8eb8319c7498b91c8c53ac412aad7
53 rdf:rest N7a42963edb4e4e1aacf00e9f4283a9ef
54 N40c6aa87e6f1425ba0009abaf6011129 schema:familyName Resende
55 schema:givenName Mauricio G.C.
56 rdf:type schema:Person
57 N4252a8b962024048bad700b90aedc5c4 rdf:first N7e5f2239989c44a69c0fa4bfed204188
58 rdf:rest N93c27421509d47c0bbaf181789ab3703
59 N46790c5c8236409aaad9e2412fea3b72 schema:name doi
60 schema:value 10.1007/978-3-319-09584-4_22
61 rdf:type schema:PropertyValue
62 N6495184e4f9f49f4b956c5fb6e166362 rdf:first sg:person.012774267611.99
63 rdf:rest Nda7c6c1088a34655abe21db671375a2b
64 N6c78c2862f524c7c888c3d1bf83c4d98 rdf:first sg:person.011636614777.06
65 rdf:rest rdf:nil
66 N7a42963edb4e4e1aacf00e9f4283a9ef rdf:first N40c6aa87e6f1425ba0009abaf6011129
67 rdf:rest N4252a8b962024048bad700b90aedc5c4
68 N7e5f2239989c44a69c0fa4bfed204188 schema:familyName Vogiatzis
69 schema:givenName Chrysafis
70 rdf:type schema:Person
71 N9106942854194413966956fec6ed04b7 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N93c27421509d47c0bbaf181789ab3703 rdf:first Nc2c9b7c3fa2b400794db5661638ddd91
74 rdf:rest rdf:nil
75 Na8809a4e3906499b90cffb7f703c1c34 schema:name Springer Nature
76 rdf:type schema:Organisation
77 Nbecfc28378964cb799c49e89564fbb81 rdf:first sg:person.07750750604.05
78 rdf:rest N6c78c2862f524c7c888c3d1bf83c4d98
79 Nc2c9b7c3fa2b400794db5661638ddd91 schema:familyName Walteros
80 schema:givenName Jose L.
81 rdf:type schema:Person
82 Nda7c6c1088a34655abe21db671375a2b rdf:first sg:person.013014044611.53
83 rdf:rest Nbecfc28378964cb799c49e89564fbb81
84 Ndb5b698885e140ef8b5be556471fa33c schema:name dimensions_id
85 schema:value pub.1045577149
86 rdf:type schema:PropertyValue
87 Ne1b8eb8319c7498b91c8c53ac412aad7 schema:familyName Pardalos
88 schema:givenName Panos M.
89 rdf:type schema:Person
90 Neacadeb1ae5a48eb849a0da4a50693f0 schema:isbn 978-3-319-09583-7
91 978-3-319-09584-4
92 schema:name Learning and Intelligent Optimization
93 rdf:type schema:Book
94 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
95 schema:name Biological Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
98 schema:name Genetics
99 rdf:type schema:DefinedTerm
100 sg:person.011636614777.06 schema:affiliation grid-institutes:grid.266298.1
101 schema:familyName Hattori
102 schema:givenName Kiyohiko
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011636614777.06
104 rdf:type schema:Person
105 sg:person.012774267611.99 schema:affiliation grid-institutes:grid.266298.1
106 schema:familyName Takadama
107 schema:givenName Keiki
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012774267611.99
109 rdf:type schema:Person
110 sg:person.013014044611.53 schema:affiliation grid-institutes:None
111 schema:familyName Harada
112 schema:givenName Tomohiro
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013014044611.53
114 rdf:type schema:Person
115 sg:person.07750750604.05 schema:affiliation grid-institutes:grid.266298.1
116 schema:familyName Sato
117 schema:givenName Hiroyuki
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05
119 rdf:type schema:Person
120 grid-institutes:None schema:alternateName Japan Society for the Promotion of Science DC, Kyoto, Japan
121 schema:name Japan Society for the Promotion of Science DC, Kyoto, Japan
122 The University of Electro-Communications, Tokyo, Japan
123 rdf:type schema:Organization
124 grid-institutes:grid.266298.1 schema:alternateName The University of Electro-Communications, Tokyo, Japan
125 schema:name The University of Electro-Communications, Tokyo, Japan
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...