Invariant Verification of Nonlinear Hybrid Automata Networks of Cardiac Cells View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Zhenqi Huang , Chuchu Fan , Alexandru Mereacre , Sayan Mitra , Marta Kwiatkowska

ABSTRACT

Verification algorithms for networks of nonlinear hybrid automata (HA) can aid us understand and control biological processes such as cardiac arrhythmia, formation of memory, and genetic regulation. We present an algorithm for over-approximating reach sets of networks of nonlinear HA which can be used for sound and relatively complete invariant checking. First, it uses automatically computed input-to-state discrepancy functions for the individual automata modules in the network \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}$\end{document} for constructing a low-dimensional model \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{M}$\end{document}. Simulations of both \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{M}$\end{document} are then used to compute the reach tubes for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}$\end{document}. These techniques enable us to handle a challenging verification problem involving a network of cardiac cells, where each cell has four continuous variables and 29 locations. Our prototype tool can check bounded-time invariants for networks with 5 cells (20 continuous variables, 295 locations) typically in less than 15 minutes for up to reasonable time horizons. From the computed reach tubes we can infer biologically relevant properties of the network from a set of initial states. More... »

PAGES

373-390

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-08867-9_25

DOI

http://dx.doi.org/10.1007/978-3-319-08867-9_25

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031446742


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA", 
          "id": "http://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Zhenqi", 
        "id": "sg:person.014560572463.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014560572463.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA", 
          "id": "http://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Chuchu", 
        "id": "sg:person.014475252747.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014475252747.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Oxford, United Kingdom", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Computer Science, University of Oxford, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mereacre", 
        "givenName": "Alexandru", 
        "id": "sg:person.07767324617.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07767324617.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA", 
          "id": "http://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mitra", 
        "givenName": "Sayan", 
        "id": "sg:person.016500427576.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016500427576.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Oxford, United Kingdom", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Computer Science, University of Oxford, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwiatkowska", 
        "givenName": "Marta", 
        "id": "sg:person.011375012273.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011375012273.39"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Verification algorithms for networks of nonlinear hybrid automata (HA) can aid us understand and control biological processes such as cardiac arrhythmia, formation of memory, and genetic regulation. We present an algorithm for over-approximating reach sets of networks of nonlinear HA which can be used for sound and relatively complete invariant checking. First, it uses automatically computed input-to-state discrepancy functions for the individual automata modules in the network \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{A}$\\end{document} for constructing a low-dimensional model \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{M}$\\end{document}. Simulations of both \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{A}$\\end{document} and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{M}$\\end{document} are then used to compute the reach tubes for \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{A}$\\end{document}. These techniques enable us to handle a challenging verification problem involving a network of cardiac cells, where each cell has four continuous variables and 29 locations. Our prototype tool can check bounded-time invariants for networks with 5 cells (20 continuous variables, 295 locations) typically in less than 15 minutes for up to reasonable time horizons. From the computed reach tubes we can infer biologically relevant properties of the network from a set of initial states.", 
    "editor": [
      {
        "familyName": "Biere", 
        "givenName": "Armin", 
        "type": "Person"
      }, 
      {
        "familyName": "Bloem", 
        "givenName": "Roderick", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-08867-9_25", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-08866-2", 
        "978-3-319-08867-9"
      ], 
      "name": "Computer Aided Verification", 
      "type": "Book"
    }, 
    "keywords": [
      "hybrid automata", 
      "nonlinear hybrid automata", 
      "reach tube", 
      "challenging verification problem", 
      "verification algorithm", 
      "invariant checking", 
      "prototype tool", 
      "invariant verification", 
      "verification problem", 
      "reasonable time horizon", 
      "reach sets", 
      "network", 
      "automata networks", 
      "algorithm", 
      "low-dimensional model", 
      "checking", 
      "set", 
      "verification", 
      "time horizon", 
      "automata", 
      "discrepancy function", 
      "module", 
      "relevant properties", 
      "tool", 
      "memory", 
      "input", 
      "simulations", 
      "initial state", 
      "technique", 
      "invariants", 
      "continuous variables", 
      "model", 
      "location", 
      "sound", 
      "process", 
      "horizon", 
      "state", 
      "function", 
      "variables", 
      "cardiac arrhythmias", 
      "biological processes", 
      "properties", 
      "genetic regulation", 
      "cardiac cells", 
      "minutes", 
      "formation of memory", 
      "cells", 
      "regulation", 
      "arrhythmias", 
      "formation", 
      "tube", 
      "problem", 
      "complete invariant checking", 
      "state discrepancy functions", 
      "individual automata modules", 
      "automata modules", 
      "bounded-time invariants", 
      "computed reach tubes", 
      "Nonlinear Hybrid Automata Networks", 
      "Hybrid Automata Networks"
    ], 
    "name": "Invariant Verification of Nonlinear Hybrid Automata Networks of Cardiac Cells", 
    "pagination": "373-390", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031446742"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-08867-9_25"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-08867-9_25", 
      "https://app.dimensions.ai/details/publication/pub.1031446742"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_202.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-08867-9_25"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-08867-9_25'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-08867-9_25'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-08867-9_25'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-08867-9_25'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      23 PREDICATES      86 URIs      79 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-08867-9_25 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd4fc51e680c94dea9f7ab00b9e15d0b8
4 schema:datePublished 2014
5 schema:datePublishedReg 2014-01-01
6 schema:description Verification algorithms for networks of nonlinear hybrid automata (HA) can aid us understand and control biological processes such as cardiac arrhythmia, formation of memory, and genetic regulation. We present an algorithm for over-approximating reach sets of networks of nonlinear HA which can be used for sound and relatively complete invariant checking. First, it uses automatically computed input-to-state discrepancy functions for the individual automata modules in the network \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}$\end{document} for constructing a low-dimensional model \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{M}$\end{document}. Simulations of both \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{M}$\end{document} are then used to compute the reach tubes for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}$\end{document}. These techniques enable us to handle a challenging verification problem involving a network of cardiac cells, where each cell has four continuous variables and 29 locations. Our prototype tool can check bounded-time invariants for networks with 5 cells (20 continuous variables, 295 locations) typically in less than 15 minutes for up to reasonable time horizons. From the computed reach tubes we can infer biologically relevant properties of the network from a set of initial states.
7 schema:editor N42044ab62f7249798e461899027cfe62
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N6d1f794628d74ef5a42e4bf2c153ef8d
12 schema:keywords Hybrid Automata Networks
13 Nonlinear Hybrid Automata Networks
14 algorithm
15 arrhythmias
16 automata
17 automata modules
18 automata networks
19 biological processes
20 bounded-time invariants
21 cardiac arrhythmias
22 cardiac cells
23 cells
24 challenging verification problem
25 checking
26 complete invariant checking
27 computed reach tubes
28 continuous variables
29 discrepancy function
30 formation
31 formation of memory
32 function
33 genetic regulation
34 horizon
35 hybrid automata
36 individual automata modules
37 initial state
38 input
39 invariant checking
40 invariant verification
41 invariants
42 location
43 low-dimensional model
44 memory
45 minutes
46 model
47 module
48 network
49 nonlinear hybrid automata
50 problem
51 process
52 properties
53 prototype tool
54 reach sets
55 reach tube
56 reasonable time horizon
57 regulation
58 relevant properties
59 set
60 simulations
61 sound
62 state
63 state discrepancy functions
64 technique
65 time horizon
66 tool
67 tube
68 variables
69 verification
70 verification algorithm
71 verification problem
72 schema:name Invariant Verification of Nonlinear Hybrid Automata Networks of Cardiac Cells
73 schema:pagination 373-390
74 schema:productId N5355c104a6a0408f87daad8ee6f78ce0
75 N95790566d612493a8742ff2aa1affb0b
76 schema:publisher Nefe1105349d94f5ea5924bce865d030c
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031446742
78 https://doi.org/10.1007/978-3-319-08867-9_25
79 schema:sdDatePublished 2021-11-01T18:50
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher Nb03edc601b0f4f1baff904c22a870561
82 schema:url https://doi.org/10.1007/978-3-319-08867-9_25
83 sgo:license sg:explorer/license/
84 sgo:sdDataset chapters
85 rdf:type schema:Chapter
86 N2175e771d7ab4d52bebe3fb9826af3b7 rdf:first sg:person.07767324617.67
87 rdf:rest Ncf799e63b1624d249cc7e269ea8626be
88 N246b0c857d4c417f9111a03327857003 schema:familyName Biere
89 schema:givenName Armin
90 rdf:type schema:Person
91 N326aa138d5154e178c6cf2406c708c6b rdf:first sg:person.011375012273.39
92 rdf:rest rdf:nil
93 N42044ab62f7249798e461899027cfe62 rdf:first N246b0c857d4c417f9111a03327857003
94 rdf:rest N845ea4f68fdd4cebab501bf69d4e2929
95 N5355c104a6a0408f87daad8ee6f78ce0 schema:name dimensions_id
96 schema:value pub.1031446742
97 rdf:type schema:PropertyValue
98 N6d1f794628d74ef5a42e4bf2c153ef8d schema:isbn 978-3-319-08866-2
99 978-3-319-08867-9
100 schema:name Computer Aided Verification
101 rdf:type schema:Book
102 N79f0a140372e4faf8b0ae50f3aa83107 rdf:first sg:person.014475252747.52
103 rdf:rest N2175e771d7ab4d52bebe3fb9826af3b7
104 N845ea4f68fdd4cebab501bf69d4e2929 rdf:first Nf8655d3ee3264e4ea140af1d4f696551
105 rdf:rest rdf:nil
106 N95790566d612493a8742ff2aa1affb0b schema:name doi
107 schema:value 10.1007/978-3-319-08867-9_25
108 rdf:type schema:PropertyValue
109 Nb03edc601b0f4f1baff904c22a870561 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Ncf799e63b1624d249cc7e269ea8626be rdf:first sg:person.016500427576.48
112 rdf:rest N326aa138d5154e178c6cf2406c708c6b
113 Nd4fc51e680c94dea9f7ab00b9e15d0b8 rdf:first sg:person.014560572463.77
114 rdf:rest N79f0a140372e4faf8b0ae50f3aa83107
115 Nefe1105349d94f5ea5924bce865d030c schema:name Springer Nature
116 rdf:type schema:Organisation
117 Nf8655d3ee3264e4ea140af1d4f696551 schema:familyName Bloem
118 schema:givenName Roderick
119 rdf:type schema:Person
120 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
121 schema:name Information and Computing Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
124 schema:name Artificial Intelligence and Image Processing
125 rdf:type schema:DefinedTerm
126 sg:person.011375012273.39 schema:affiliation grid-institutes:grid.4991.5
127 schema:familyName Kwiatkowska
128 schema:givenName Marta
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011375012273.39
130 rdf:type schema:Person
131 sg:person.014475252747.52 schema:affiliation grid-institutes:grid.35403.31
132 schema:familyName Fan
133 schema:givenName Chuchu
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014475252747.52
135 rdf:type schema:Person
136 sg:person.014560572463.77 schema:affiliation grid-institutes:grid.35403.31
137 schema:familyName Huang
138 schema:givenName Zhenqi
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014560572463.77
140 rdf:type schema:Person
141 sg:person.016500427576.48 schema:affiliation grid-institutes:grid.35403.31
142 schema:familyName Mitra
143 schema:givenName Sayan
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016500427576.48
145 rdf:type schema:Person
146 sg:person.07767324617.67 schema:affiliation grid-institutes:grid.4991.5
147 schema:familyName Mereacre
148 schema:givenName Alexandru
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07767324617.67
150 rdf:type schema:Person
151 grid-institutes:grid.35403.31 schema:alternateName Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA
152 schema:name Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA
153 rdf:type schema:Organization
154 grid-institutes:grid.4991.5 schema:alternateName Department of Computer Science, University of Oxford, United Kingdom
155 schema:name Department of Computer Science, University of Oxford, United Kingdom
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...