Determination of the Relevant First Aiders within a Volunteer Notification System View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Jesko Elsner , Marie-Thérèse Schneiders , Daniel Schilberg , Sabina Jeschke

ABSTRACT

During a sudden cardiac arrest (SCA), an untreated time interval of only a few minutes usually means the victims’ death. While professional emergency medical services (EMS) are working on shortening the time needed for arriving on scene, there are parameters that limit potential performance increases regarding this topic; e.g. current traffic, the travel distance and the delay between an incoming emergency call and the march out of the professional helpers. Given this premise, it is necessary to find alternative ways for providing immediate first aid treatment to victims suffering SCA. One approach is the implementation of a Volunteer Notification System (VNS) – integrating laypersons and medically trained volunteers into the EMS, by notifying those potential helpers who are, at the time of incident, close to the scene. Whereas the term “close” is suitable for describing the general concept of a VNS, a social valuable system implementation requires an algorithm that analyses and determines which volunteers are to be alarmed. False or unnecessary notifications might have a negative effect on the user acceptance or system performance, whereas not alarming potential helpers who are actually close enough can greatly decrease the system’s value. While the actual distance is an important parameter to be considered, it does not necessarily determine the time of arrival at the scene. Due to possible obstacles, the beeline calculation obviously does not offer a suitable background for estimating the traveling time; but even considering up-to-date roadmap material in order to calculate the shortest way does not provide sufficient information without some assumptions. Thus, the type of movement, the physical performance of a volunteer and the traffic situation directly influence those calculations. Furthermore, limiting the relevant decision parameters to merely distance seems inadequate and secondary criteria apply; e.g. medical expertise, knowledge of the area or general engagement. In addition to giving a brief overview to the “EMuRgency” project, this paper will introduce the main criteria for determining the relevant volunteers within an ongoing emergency scenario. More... »

PAGES

593-596

Book

TITLE

Automation, Communication and Cybernetics in Science and Engineering 2013/2014

ISBN

978-3-319-08815-0
978-3-319-08816-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-08816-7_45

DOI

http://dx.doi.org/10.1007/978-3-319-08816-7_45

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040697155


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "RWTH Aachen University", 
          "id": "https://www.grid.ac/institutes/grid.1957.a", 
          "name": [
            "IMA/ZLW & IfU, RWTH Aachen University, Dennewartstr. 27, 52068\u00a0Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elsner", 
        "givenName": "Jesko", 
        "id": "sg:person.0647126270.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647126270.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RWTH Aachen University", 
          "id": "https://www.grid.ac/institutes/grid.1957.a", 
          "name": [
            "IMA/ZLW & IfU, RWTH Aachen University, Dennewartstr. 27, 52068\u00a0Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schneiders", 
        "givenName": "Marie-Th\u00e9r\u00e8se", 
        "id": "sg:person.01026706610.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026706610.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RWTH Aachen University", 
          "id": "https://www.grid.ac/institutes/grid.1957.a", 
          "name": [
            "IMA/ZLW & IfU, RWTH Aachen University, Dennewartstr. 27, 52068\u00a0Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schilberg", 
        "givenName": "Daniel", 
        "id": "sg:person.07732414123.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07732414123.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RWTH Aachen University", 
          "id": "https://www.grid.ac/institutes/grid.1957.a", 
          "name": [
            "IMA/ZLW & IfU, RWTH Aachen University, Dennewartstr. 27, 52068\u00a0Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jeschke", 
        "givenName": "Sabina", 
        "id": "sg:person.015756342667.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015756342667.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10049-007-0910-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031601532", 
          "https://doi.org/10.1007/s10049-007-0910-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10049-007-0910-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031601532", 
          "https://doi.org/10.1007/s10049-007-0910-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "During a sudden cardiac arrest (SCA), an untreated time interval of only a few minutes usually means the victims\u2019 death. While professional emergency medical services (EMS) are working on shortening the time needed for arriving on scene, there are parameters that limit potential performance increases regarding this topic; e.g. current traffic, the travel distance and the delay between an incoming emergency call and the march out of the professional helpers. Given this premise, it is necessary to find alternative ways for providing immediate first aid treatment to victims suffering SCA. One approach is the implementation of a Volunteer Notification System (VNS) \u2013 integrating laypersons and medically trained volunteers into the EMS, by notifying those potential helpers who are, at the time of incident, close to the scene. Whereas the term \u201cclose\u201d is suitable for describing the general concept of a VNS, a social valuable system implementation requires an algorithm that analyses and determines which volunteers are to be alarmed. False or unnecessary notifications might have a negative effect on the user acceptance or system performance, whereas not alarming potential helpers who are actually close enough can greatly decrease the system\u2019s value. While the actual distance is an important parameter to be considered, it does not necessarily determine the time of arrival at the scene. Due to possible obstacles, the beeline calculation obviously does not offer a suitable background for estimating the traveling time; but even considering up-to-date roadmap material in order to calculate the shortest way does not provide sufficient information without some assumptions. Thus, the type of movement, the physical performance of a volunteer and the traffic situation directly influence those calculations. Furthermore, limiting the relevant decision parameters to merely distance seems inadequate and secondary criteria apply; e.g. medical expertise, knowledge of the area or general engagement. In addition to giving a brief overview to the \u201cEMuRgency\u201d project, this paper will introduce the main criteria for determining the relevant volunteers within an ongoing emergency scenario.", 
    "editor": [
      {
        "familyName": "Jeschke", 
        "givenName": "Sabina", 
        "type": "Person"
      }, 
      {
        "familyName": "Isenhardt", 
        "givenName": "Ingrid", 
        "type": "Person"
      }, 
      {
        "familyName": "Hees", 
        "givenName": "Frank", 
        "type": "Person"
      }, 
      {
        "familyName": "Henning", 
        "givenName": "Klaus", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-08816-7_45", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-08815-0", 
        "978-3-319-08816-7"
      ], 
      "name": "Automation, Communication and Cybernetics in Science and Engineering 2013/2014", 
      "type": "Book"
    }, 
    "name": "Determination of the Relevant First Aiders within a Volunteer Notification System", 
    "pagination": "593-596", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-08816-7_45"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c1dd47b70f36f6917386afd563dc9450cdf37c72d9ab589cf5cb49a8940dd4c5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040697155"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-08816-7_45", 
      "https://app.dimensions.ai/details/publication/pub.1040697155"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000268.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-08816-7_45"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-08816-7_45'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-08816-7_45'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-08816-7_45'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-08816-7_45'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-08816-7_45 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N8b3c664636754c778995e725a5d645c8
4 schema:citation sg:pub.10.1007/s10049-007-0910-y
5 schema:datePublished 2014
6 schema:datePublishedReg 2014-01-01
7 schema:description During a sudden cardiac arrest (SCA), an untreated time interval of only a few minutes usually means the victims’ death. While professional emergency medical services (EMS) are working on shortening the time needed for arriving on scene, there are parameters that limit potential performance increases regarding this topic; e.g. current traffic, the travel distance and the delay between an incoming emergency call and the march out of the professional helpers. Given this premise, it is necessary to find alternative ways for providing immediate first aid treatment to victims suffering SCA. One approach is the implementation of a Volunteer Notification System (VNS) – integrating laypersons and medically trained volunteers into the EMS, by notifying those potential helpers who are, at the time of incident, close to the scene. Whereas the term “close” is suitable for describing the general concept of a VNS, a social valuable system implementation requires an algorithm that analyses and determines which volunteers are to be alarmed. False or unnecessary notifications might have a negative effect on the user acceptance or system performance, whereas not alarming potential helpers who are actually close enough can greatly decrease the system’s value. While the actual distance is an important parameter to be considered, it does not necessarily determine the time of arrival at the scene. Due to possible obstacles, the beeline calculation obviously does not offer a suitable background for estimating the traveling time; but even considering up-to-date roadmap material in order to calculate the shortest way does not provide sufficient information without some assumptions. Thus, the type of movement, the physical performance of a volunteer and the traffic situation directly influence those calculations. Furthermore, limiting the relevant decision parameters to merely distance seems inadequate and secondary criteria apply; e.g. medical expertise, knowledge of the area or general engagement. In addition to giving a brief overview to the “EMuRgency” project, this paper will introduce the main criteria for determining the relevant volunteers within an ongoing emergency scenario.
8 schema:editor Nc48af6caf49b4b6a9b902d6b8b304494
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N8ca50bb59b014d72a8ac50a835a343ff
13 schema:name Determination of the Relevant First Aiders within a Volunteer Notification System
14 schema:pagination 593-596
15 schema:productId N24406164b21f4e93b8f07638107d66b4
16 N5abbc8b4256543a0a45cc3e90af048be
17 Neca0584ee3f544cb8f2b4b95875ebd18
18 schema:publisher N757582a82bda4fbba56afd205c245547
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040697155
20 https://doi.org/10.1007/978-3-319-08816-7_45
21 schema:sdDatePublished 2019-04-15T14:27
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N909b294368f24472b2452df0644c660d
24 schema:url http://link.springer.com/10.1007/978-3-319-08816-7_45
25 sgo:license sg:explorer/license/
26 sgo:sdDataset chapters
27 rdf:type schema:Chapter
28 N15ea8f72a6674af9bc5e477e5d5f7ed0 rdf:first sg:person.015756342667.94
29 rdf:rest rdf:nil
30 N202a4270d6b64082a8a0849ab04dc7ee rdf:first N4614cb4d5b5b42a6ac3caee454686f77
31 rdf:rest N30604ddea4944ad7b5249035d98452e6
32 N24406164b21f4e93b8f07638107d66b4 schema:name dimensions_id
33 schema:value pub.1040697155
34 rdf:type schema:PropertyValue
35 N30604ddea4944ad7b5249035d98452e6 rdf:first Nb652e51f42aa420eb284958f2c751560
36 rdf:rest Nb0b0412382d949bba05af793c53a6130
37 N4614cb4d5b5b42a6ac3caee454686f77 schema:familyName Isenhardt
38 schema:givenName Ingrid
39 rdf:type schema:Person
40 N5422dc3905b641a0a9dce4ee4ccaeeb7 schema:familyName Henning
41 schema:givenName Klaus
42 rdf:type schema:Person
43 N5abbc8b4256543a0a45cc3e90af048be schema:name readcube_id
44 schema:value c1dd47b70f36f6917386afd563dc9450cdf37c72d9ab589cf5cb49a8940dd4c5
45 rdf:type schema:PropertyValue
46 N757582a82bda4fbba56afd205c245547 schema:location Cham
47 schema:name Springer International Publishing
48 rdf:type schema:Organisation
49 N83a797dadc3647a49363e13ea4d828d1 rdf:first sg:person.01026706610.40
50 rdf:rest Nbf381d3f149f47be8768f2cdf036fc16
51 N8b3c664636754c778995e725a5d645c8 rdf:first sg:person.0647126270.58
52 rdf:rest N83a797dadc3647a49363e13ea4d828d1
53 N8ca50bb59b014d72a8ac50a835a343ff schema:isbn 978-3-319-08815-0
54 978-3-319-08816-7
55 schema:name Automation, Communication and Cybernetics in Science and Engineering 2013/2014
56 rdf:type schema:Book
57 N909b294368f24472b2452df0644c660d schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Nb0b0412382d949bba05af793c53a6130 rdf:first N5422dc3905b641a0a9dce4ee4ccaeeb7
60 rdf:rest rdf:nil
61 Nb652e51f42aa420eb284958f2c751560 schema:familyName Hees
62 schema:givenName Frank
63 rdf:type schema:Person
64 Nbf381d3f149f47be8768f2cdf036fc16 rdf:first sg:person.07732414123.21
65 rdf:rest N15ea8f72a6674af9bc5e477e5d5f7ed0
66 Nc0f0a64896fc44ce82d6f524262e9a29 schema:familyName Jeschke
67 schema:givenName Sabina
68 rdf:type schema:Person
69 Nc48af6caf49b4b6a9b902d6b8b304494 rdf:first Nc0f0a64896fc44ce82d6f524262e9a29
70 rdf:rest N202a4270d6b64082a8a0849ab04dc7ee
71 Neca0584ee3f544cb8f2b4b95875ebd18 schema:name doi
72 schema:value 10.1007/978-3-319-08816-7_45
73 rdf:type schema:PropertyValue
74 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
75 schema:name Psychology and Cognitive Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
78 schema:name Psychology
79 rdf:type schema:DefinedTerm
80 sg:person.01026706610.40 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
81 schema:familyName Schneiders
82 schema:givenName Marie-Thérèse
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026706610.40
84 rdf:type schema:Person
85 sg:person.015756342667.94 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
86 schema:familyName Jeschke
87 schema:givenName Sabina
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015756342667.94
89 rdf:type schema:Person
90 sg:person.0647126270.58 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
91 schema:familyName Elsner
92 schema:givenName Jesko
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647126270.58
94 rdf:type schema:Person
95 sg:person.07732414123.21 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
96 schema:familyName Schilberg
97 schema:givenName Daniel
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07732414123.21
99 rdf:type schema:Person
100 sg:pub.10.1007/s10049-007-0910-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1031601532
101 https://doi.org/10.1007/s10049-007-0910-y
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.1957.a schema:alternateName RWTH Aachen University
104 schema:name IMA/ZLW & IfU, RWTH Aachen University, Dennewartstr. 27, 52068 Aachen, Germany
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...