A Dynamical View of Different Solution Paradigms in Two-Person Symmetric Games: Nash Versus Co-action Equilibria View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015-01-28

AUTHORS

V. Sasidevan , Sitabhra Sinha

ABSTRACT

The study of games and their equilibria is central to developing insights for understanding many socio-economic phenomena. Here we present a dynamical systems view of the equilibria of two-person, payoff-symmetric games. In particular, using this perspective, we discuss the differences between two solution concepts for such games—namely, those of Nash equilibrium and co-action equilibrium. For the Nash equilibrium, we show that the dynamical view can provide an equilibrium refinement, selecting one equilibrium among several possibilities, thereby solving the issue of multiple equilibria that appear in some games. We illustrate in detail this dynamical perspective by considering three well known 2-person games namely the Prisoner’s Dilemma, game of Chicken and the Stag-Hunt. We find that in all of these cases, co-action equilibria tends to correspond to ‘nicer’ strategies than those corresponding to Nash equilibria. More... »

PAGES

213-223

Book

TITLE

Econophysics and Data Driven Modelling of Market Dynamics

ISBN

978-3-319-08472-5
978-3-319-08473-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-08473-2_9

DOI

http://dx.doi.org/10.1007/978-3-319-08473-2_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046637027


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Institute of Mathematical Sciences, CIT Campus, Taramani, 600113, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.462414.1", 
          "name": [
            "The Institute of Mathematical Sciences, CIT Campus, Taramani, 600113, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sasidevan", 
        "givenName": "V.", 
        "id": "sg:person.0610714655.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610714655.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Institute of Mathematical Sciences, CIT Campus, Taramani, 600113, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.462414.1", 
          "name": [
            "The Institute of Mathematical Sciences, CIT Campus, Taramani, 600113, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sinha", 
        "givenName": "Sitabhra", 
        "id": "sg:person.01106420703.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106420703.25"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-01-28", 
    "datePublishedReg": "2015-01-28", 
    "description": "The study of games and their equilibria is central to developing insights for understanding many socio-economic phenomena. Here we present a dynamical systems view of the equilibria of two-person, payoff-symmetric games. In particular, using this perspective, we discuss the differences between two solution concepts for such games\u2014namely, those of Nash equilibrium and co-action equilibrium. For the Nash equilibrium, we show that the dynamical view can provide an equilibrium refinement, selecting one equilibrium among several possibilities, thereby solving the issue of multiple equilibria that appear in some games. We illustrate in detail this dynamical perspective by considering three well known 2-person games namely the Prisoner\u2019s Dilemma, game of Chicken and the Stag-Hunt. We find that in all of these cases, co-action equilibria tends to correspond to \u2018nicer\u2019 strategies than those corresponding to Nash equilibria.", 
    "editor": [
      {
        "familyName": "Abergel", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "type": "Person"
      }, 
      {
        "familyName": "Aoyama", 
        "givenName": "Hideaki", 
        "type": "Person"
      }, 
      {
        "familyName": "Chakrabarti", 
        "givenName": "Bikas K.", 
        "type": "Person"
      }, 
      {
        "familyName": "Chakraborti", 
        "givenName": "Anirban", 
        "type": "Person"
      }, 
      {
        "familyName": "Ghosh", 
        "givenName": "Asim", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-08473-2_9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-08472-5", 
        "978-3-319-08473-2"
      ], 
      "name": "Econophysics and Data Driven Modelling of Market Dynamics", 
      "type": "Book"
    }, 
    "keywords": [
      "co-action equilibrium", 
      "dynamical view", 
      "dynamical systems view", 
      "Nash equilibrium", 
      "dynamical perspective", 
      "solution paradigm", 
      "two-person", 
      "two-person symmetric games", 
      "solution concept", 
      "socio-economic phenomena", 
      "symmetric games", 
      "multiple equilibria", 
      "equilibrium", 
      "such games", 
      "systems view", 
      "game", 
      "phenomenon", 
      "detail", 
      "study of games", 
      "equilibrium refinements", 
      "view", 
      "refinement", 
      "cases", 
      "concept", 
      "possibility", 
      "Prisoner's Dilemma", 
      "Stag Hunt", 
      "paradigm", 
      "issues", 
      "insights", 
      "perspective", 
      "strategies", 
      "study", 
      "differences", 
      "game of chicken", 
      "dilemma", 
      "chickens"
    ], 
    "name": "A Dynamical View of Different Solution Paradigms in Two-Person Symmetric Games: Nash Versus Co-action Equilibria", 
    "pagination": "213-223", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046637027"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-08473-2_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-08473-2_9", 
      "https://app.dimensions.ai/details/publication/pub.1046637027"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_290.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-08473-2_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-08473-2_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-08473-2_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-08473-2_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-08473-2_9'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      23 PREDICATES      62 URIs      55 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-08473-2_9 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N44afb026df7a44118d07ff094c8fee19
4 schema:datePublished 2015-01-28
5 schema:datePublishedReg 2015-01-28
6 schema:description The study of games and their equilibria is central to developing insights for understanding many socio-economic phenomena. Here we present a dynamical systems view of the equilibria of two-person, payoff-symmetric games. In particular, using this perspective, we discuss the differences between two solution concepts for such games—namely, those of Nash equilibrium and co-action equilibrium. For the Nash equilibrium, we show that the dynamical view can provide an equilibrium refinement, selecting one equilibrium among several possibilities, thereby solving the issue of multiple equilibria that appear in some games. We illustrate in detail this dynamical perspective by considering three well known 2-person games namely the Prisoner’s Dilemma, game of Chicken and the Stag-Hunt. We find that in all of these cases, co-action equilibria tends to correspond to ‘nicer’ strategies than those corresponding to Nash equilibria.
7 schema:editor N6739d66f0b5c4a34b3aaacd0f7343dee
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nb514cb682f104ed9b641aae14d8bbf41
12 schema:keywords Nash equilibrium
13 Prisoner's Dilemma
14 Stag Hunt
15 cases
16 chickens
17 co-action equilibrium
18 concept
19 detail
20 differences
21 dilemma
22 dynamical perspective
23 dynamical systems view
24 dynamical view
25 equilibrium
26 equilibrium refinements
27 game
28 game of chicken
29 insights
30 issues
31 multiple equilibria
32 paradigm
33 perspective
34 phenomenon
35 possibility
36 refinement
37 socio-economic phenomena
38 solution concept
39 solution paradigm
40 strategies
41 study
42 study of games
43 such games
44 symmetric games
45 systems view
46 two-person
47 two-person symmetric games
48 view
49 schema:name A Dynamical View of Different Solution Paradigms in Two-Person Symmetric Games: Nash Versus Co-action Equilibria
50 schema:pagination 213-223
51 schema:productId N4b8b0d4d8e3e47f3aaaf70cdd0bb6664
52 Ne86b336b5aaf4cd6bff76d473ea67099
53 schema:publisher Nef9087dc189142c4a5327f1acf8eefbb
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046637027
55 https://doi.org/10.1007/978-3-319-08473-2_9
56 schema:sdDatePublished 2022-05-10T10:45
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N5021da2f22bc4f6fb000c1f054f6a327
59 schema:url https://doi.org/10.1007/978-3-319-08473-2_9
60 sgo:license sg:explorer/license/
61 sgo:sdDataset chapters
62 rdf:type schema:Chapter
63 N1276fdb996264a06bc66c5a8807ee403 schema:familyName Aoyama
64 schema:givenName Hideaki
65 rdf:type schema:Person
66 N44ae18433fcc4b74b5dc1bb3f4c3682e rdf:first sg:person.01106420703.25
67 rdf:rest rdf:nil
68 N44afb026df7a44118d07ff094c8fee19 rdf:first sg:person.0610714655.31
69 rdf:rest N44ae18433fcc4b74b5dc1bb3f4c3682e
70 N4b8b0d4d8e3e47f3aaaf70cdd0bb6664 schema:name dimensions_id
71 schema:value pub.1046637027
72 rdf:type schema:PropertyValue
73 N4c0c1e71ec7248fb87d4358f826f2fcf rdf:first N1276fdb996264a06bc66c5a8807ee403
74 rdf:rest N730ced07a87c46ccab08f980d01f3d71
75 N5021da2f22bc4f6fb000c1f054f6a327 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N54565f96106a4d3796f8778410c7a318 schema:familyName Chakraborti
78 schema:givenName Anirban
79 rdf:type schema:Person
80 N6739d66f0b5c4a34b3aaacd0f7343dee rdf:first Nf977054385124f48b544968e326e49fe
81 rdf:rest N4c0c1e71ec7248fb87d4358f826f2fcf
82 N730ced07a87c46ccab08f980d01f3d71 rdf:first Nc0b40f486eb546f0b4bbc224296f1954
83 rdf:rest Na7ebb981b01b411887af41fae0271c9c
84 N830b0319f1114f95b6f91c294b15c122 rdf:first Nc8905974becb41d38d48b456c2acc809
85 rdf:rest rdf:nil
86 Na7ebb981b01b411887af41fae0271c9c rdf:first N54565f96106a4d3796f8778410c7a318
87 rdf:rest N830b0319f1114f95b6f91c294b15c122
88 Nb514cb682f104ed9b641aae14d8bbf41 schema:isbn 978-3-319-08472-5
89 978-3-319-08473-2
90 schema:name Econophysics and Data Driven Modelling of Market Dynamics
91 rdf:type schema:Book
92 Nc0b40f486eb546f0b4bbc224296f1954 schema:familyName Chakrabarti
93 schema:givenName Bikas K.
94 rdf:type schema:Person
95 Nc8905974becb41d38d48b456c2acc809 schema:familyName Ghosh
96 schema:givenName Asim
97 rdf:type schema:Person
98 Ne86b336b5aaf4cd6bff76d473ea67099 schema:name doi
99 schema:value 10.1007/978-3-319-08473-2_9
100 rdf:type schema:PropertyValue
101 Nef9087dc189142c4a5327f1acf8eefbb schema:name Springer Nature
102 rdf:type schema:Organisation
103 Nf977054385124f48b544968e326e49fe schema:familyName Abergel
104 schema:givenName Frédéric
105 rdf:type schema:Person
106 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
107 schema:name Mathematical Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
110 schema:name Applied Mathematics
111 rdf:type schema:DefinedTerm
112 sg:person.01106420703.25 schema:affiliation grid-institutes:grid.462414.1
113 schema:familyName Sinha
114 schema:givenName Sitabhra
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106420703.25
116 rdf:type schema:Person
117 sg:person.0610714655.31 schema:affiliation grid-institutes:grid.462414.1
118 schema:familyName Sasidevan
119 schema:givenName V.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610714655.31
121 rdf:type schema:Person
122 grid-institutes:grid.462414.1 schema:alternateName The Institute of Mathematical Sciences, CIT Campus, Taramani, 600113, Chennai, India
123 schema:name The Institute of Mathematical Sciences, CIT Campus, Taramani, 600113, Chennai, India
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...