Bitcoin Dynamics: The Inverse Square Law of Price Fluctuations and Other Stylized Facts View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015-01-28

AUTHORS

Soumya Easwaran , Manu Dixit , Sitabhra Sinha

ABSTRACT

Analysis of time-series data of different markets have produced evidence for several stylized facts (universal features) including heavy tails characterized by power law exponents, which provide us tantalizing hints of the dynamics underlying such complex systems. It is especially important to see how these features evolve over time after the market is created and gradually develops. The recent advent of the digital currency, Bitcoin, and its growing popularity as an asset traded between agents over the last few years, provides us with an invaluable dataset for such a study. Similar to many financial markets, Bitcoin is de-centralized and its value is not controlled by a single institution, (e.g., a central bank). Here we have analyzed high-frequency Bitcoin trading data (with a resolution of one tick, i.e., a single trading event). We show that the distribution of price fluctuation (measured in terms of logarithmic return) has a heavy tail. The exponent of the tail implies that Bitcoin fluctuations follow an inverse square law, in contrast to the inverse cubic law exhibited by most financial and commodities markets. The distribution of transaction sizes and trading volume are seen to have Levy-stable distribution. Multi-scale analysis show the presence of long term memory effects in market behavior. More... »

PAGES

121-128

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-08473-2_4

DOI

http://dx.doi.org/10.1007/978-3-319-08473-2_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011021834


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Commerce, Management, Tourism and Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Banking, Finance and Investment", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Institute of Mathematical Sciences, CIT Campus, Taramani, 600113, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.462414.1", 
          "name": [
            "The Institute of Mathematical Sciences, CIT Campus, Taramani, 600113, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Easwaran", 
        "givenName": "Soumya", 
        "id": "sg:person.0673751775.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673751775.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Birla Institute of Technology and Science, 333031, Pilani, India", 
          "id": "http://www.grid.ac/institutes/grid.418391.6", 
          "name": [
            "Birla Institute of Technology and Science, 333031, Pilani, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dixit", 
        "givenName": "Manu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Institute of Mathematical Sciences, CIT Campus, Taramani, 600113, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.462414.1", 
          "name": [
            "The Institute of Mathematical Sciences, CIT Campus, Taramani, 600113, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sinha", 
        "givenName": "Sitabhra", 
        "id": "sg:person.01106420703.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106420703.25"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-01-28", 
    "datePublishedReg": "2015-01-28", 
    "description": "Analysis of time-series data of different markets have produced evidence for several stylized facts (universal features) including heavy tails characterized by power law exponents, which provide us tantalizing hints of the dynamics underlying such complex systems. It is especially important to see how these features evolve over time after the market is created and gradually develops. The recent advent of the digital currency, Bitcoin, and its growing popularity as an asset traded between agents over the last few years, provides us with an invaluable dataset for such a study. Similar to many financial markets, Bitcoin is de-centralized and its value is not controlled by a single institution, (e.g., a central bank). Here we have analyzed high-frequency Bitcoin trading data (with a resolution of one tick, i.e., a single trading event). We show that the distribution of price fluctuation (measured in terms of logarithmic return) has a heavy tail. The exponent of the tail implies that Bitcoin fluctuations follow an inverse square law, in contrast to the inverse cubic law exhibited by most financial and commodities markets. The distribution of transaction sizes and trading volume are seen to have Levy-stable distribution. Multi-scale analysis show the presence of long term memory effects in market behavior.", 
    "editor": [
      {
        "familyName": "Abergel", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "type": "Person"
      }, 
      {
        "familyName": "Aoyama", 
        "givenName": "Hideaki", 
        "type": "Person"
      }, 
      {
        "familyName": "Chakrabarti", 
        "givenName": "Bikas K.", 
        "type": "Person"
      }, 
      {
        "familyName": "Chakraborti", 
        "givenName": "Anirban", 
        "type": "Person"
      }, 
      {
        "familyName": "Ghosh", 
        "givenName": "Asim", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-08473-2_4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-08472-5", 
        "978-3-319-08473-2"
      ], 
      "name": "Econophysics and Data Driven Modelling of Market Dynamics", 
      "type": "Book"
    }, 
    "keywords": [
      "price fluctuations", 
      "stylized facts", 
      "heavy tails", 
      "inverse cubic law", 
      "time-series data", 
      "Levy-stable distribution", 
      "financial markets", 
      "market behavior", 
      "trading volume", 
      "trading data", 
      "different markets", 
      "long term memory effects", 
      "transaction size", 
      "market", 
      "digital currency", 
      "term memory effects", 
      "invaluable dataset", 
      "Bitcoin", 
      "currency", 
      "assets", 
      "fluctuations", 
      "cubic law", 
      "institutions", 
      "power law exponent", 
      "fact", 
      "multi-scale analysis", 
      "law", 
      "evidence", 
      "law exponent", 
      "analysis", 
      "data", 
      "dynamics", 
      "tail", 
      "distribution", 
      "complex systems", 
      "datasets", 
      "such complex systems", 
      "values", 
      "behavior", 
      "popularity", 
      "effect", 
      "recent advent", 
      "years", 
      "size", 
      "time", 
      "volume", 
      "system", 
      "hints", 
      "exponent", 
      "agents", 
      "advent", 
      "contrast", 
      "study", 
      "features", 
      "memory effect", 
      "de", 
      "presence", 
      "square law", 
      "inverse square law", 
      "single institution", 
      "high-frequency Bitcoin trading data", 
      "Bitcoin trading data", 
      "Bitcoin fluctuations"
    ], 
    "name": "Bitcoin Dynamics: The Inverse Square Law of Price Fluctuations and Other Stylized Facts", 
    "pagination": "121-128", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011021834"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-08473-2_4"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-08473-2_4", 
      "https://app.dimensions.ai/details/publication/pub.1011021834"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_82.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-08473-2_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-08473-2_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-08473-2_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-08473-2_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-08473-2_4'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      23 PREDICATES      90 URIs      81 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-08473-2_4 schema:about anzsrc-for:14
2 anzsrc-for:1403
3 anzsrc-for:15
4 anzsrc-for:1502
5 schema:author N74dfa225c60141528cf8599815a712fe
6 schema:datePublished 2015-01-28
7 schema:datePublishedReg 2015-01-28
8 schema:description Analysis of time-series data of different markets have produced evidence for several stylized facts (universal features) including heavy tails characterized by power law exponents, which provide us tantalizing hints of the dynamics underlying such complex systems. It is especially important to see how these features evolve over time after the market is created and gradually develops. The recent advent of the digital currency, Bitcoin, and its growing popularity as an asset traded between agents over the last few years, provides us with an invaluable dataset for such a study. Similar to many financial markets, Bitcoin is de-centralized and its value is not controlled by a single institution, (e.g., a central bank). Here we have analyzed high-frequency Bitcoin trading data (with a resolution of one tick, i.e., a single trading event). We show that the distribution of price fluctuation (measured in terms of logarithmic return) has a heavy tail. The exponent of the tail implies that Bitcoin fluctuations follow an inverse square law, in contrast to the inverse cubic law exhibited by most financial and commodities markets. The distribution of transaction sizes and trading volume are seen to have Levy-stable distribution. Multi-scale analysis show the presence of long term memory effects in market behavior.
9 schema:editor N24d58e2b02104766a3ae87a3d90e81be
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N93e33fc68ba8416d8ab73c0fb30f2706
14 schema:keywords Bitcoin
15 Bitcoin fluctuations
16 Bitcoin trading data
17 Levy-stable distribution
18 advent
19 agents
20 analysis
21 assets
22 behavior
23 complex systems
24 contrast
25 cubic law
26 currency
27 data
28 datasets
29 de
30 different markets
31 digital currency
32 distribution
33 dynamics
34 effect
35 evidence
36 exponent
37 fact
38 features
39 financial markets
40 fluctuations
41 heavy tails
42 high-frequency Bitcoin trading data
43 hints
44 institutions
45 invaluable dataset
46 inverse cubic law
47 inverse square law
48 law
49 law exponent
50 long term memory effects
51 market
52 market behavior
53 memory effect
54 multi-scale analysis
55 popularity
56 power law exponent
57 presence
58 price fluctuations
59 recent advent
60 single institution
61 size
62 square law
63 study
64 stylized facts
65 such complex systems
66 system
67 tail
68 term memory effects
69 time
70 time-series data
71 trading data
72 trading volume
73 transaction size
74 values
75 volume
76 years
77 schema:name Bitcoin Dynamics: The Inverse Square Law of Price Fluctuations and Other Stylized Facts
78 schema:pagination 121-128
79 schema:productId N8d7f055f7bbb49fa9fe9bdffccbb1a1a
80 N9370670a9ecb4b768bb8833313496494
81 schema:publisher Na3e9794d0cf84ce78c21269abf982a89
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011021834
83 https://doi.org/10.1007/978-3-319-08473-2_4
84 schema:sdDatePublished 2021-12-01T20:13
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher Nea9e48f913d248079d50ebe206c1ce65
87 schema:url https://doi.org/10.1007/978-3-319-08473-2_4
88 sgo:license sg:explorer/license/
89 sgo:sdDataset chapters
90 rdf:type schema:Chapter
91 N09f373c5a1c3425d9aa2fe2c91de21f4 rdf:first N9cc39979e2944be9ab9b72c8648655da
92 rdf:rest Ncacc9db17b794b3593480444188bd68b
93 N24d58e2b02104766a3ae87a3d90e81be rdf:first Ne06981ec5d9a46bdadfc26071b856b77
94 rdf:rest N27d10dde421b4d929c3dffbd3f1a0a61
95 N27d10dde421b4d929c3dffbd3f1a0a61 rdf:first N430dc765c1c74c268972b83dd6da4c1d
96 rdf:rest Nf458f6dbb7bd42b69239409a098d2a16
97 N430dc765c1c74c268972b83dd6da4c1d schema:familyName Aoyama
98 schema:givenName Hideaki
99 rdf:type schema:Person
100 N74dfa225c60141528cf8599815a712fe rdf:first sg:person.0673751775.94
101 rdf:rest N9926a6d7cfe5428599735616e49b82b2
102 N78dd83af09614b54b5a2879ce01634ff schema:familyName Ghosh
103 schema:givenName Asim
104 rdf:type schema:Person
105 N8d7f055f7bbb49fa9fe9bdffccbb1a1a schema:name doi
106 schema:value 10.1007/978-3-319-08473-2_4
107 rdf:type schema:PropertyValue
108 N9370670a9ecb4b768bb8833313496494 schema:name dimensions_id
109 schema:value pub.1011021834
110 rdf:type schema:PropertyValue
111 N93e33fc68ba8416d8ab73c0fb30f2706 schema:isbn 978-3-319-08472-5
112 978-3-319-08473-2
113 schema:name Econophysics and Data Driven Modelling of Market Dynamics
114 rdf:type schema:Book
115 N9926a6d7cfe5428599735616e49b82b2 rdf:first Ne3b800cf36ee49cbafdd5fc0bc5f7e7d
116 rdf:rest Nfdff96b57bec43bb90097bc1044ae326
117 N9cc39979e2944be9ab9b72c8648655da schema:familyName Chakraborti
118 schema:givenName Anirban
119 rdf:type schema:Person
120 Na3e9794d0cf84ce78c21269abf982a89 schema:name Springer Nature
121 rdf:type schema:Organisation
122 Ncacc9db17b794b3593480444188bd68b rdf:first N78dd83af09614b54b5a2879ce01634ff
123 rdf:rest rdf:nil
124 Ne06981ec5d9a46bdadfc26071b856b77 schema:familyName Abergel
125 schema:givenName Frédéric
126 rdf:type schema:Person
127 Ne3b800cf36ee49cbafdd5fc0bc5f7e7d schema:affiliation grid-institutes:grid.418391.6
128 schema:familyName Dixit
129 schema:givenName Manu
130 rdf:type schema:Person
131 Nea9e48f913d248079d50ebe206c1ce65 schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 Nf458f6dbb7bd42b69239409a098d2a16 rdf:first Nf8ca3be31d914194a4e1bef975d4bcd8
134 rdf:rest N09f373c5a1c3425d9aa2fe2c91de21f4
135 Nf8ca3be31d914194a4e1bef975d4bcd8 schema:familyName Chakrabarti
136 schema:givenName Bikas K.
137 rdf:type schema:Person
138 Nfdff96b57bec43bb90097bc1044ae326 rdf:first sg:person.01106420703.25
139 rdf:rest rdf:nil
140 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
141 schema:name Economics
142 rdf:type schema:DefinedTerm
143 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
144 schema:name Econometrics
145 rdf:type schema:DefinedTerm
146 anzsrc-for:15 schema:inDefinedTermSet anzsrc-for:
147 schema:name Commerce, Management, Tourism and Services
148 rdf:type schema:DefinedTerm
149 anzsrc-for:1502 schema:inDefinedTermSet anzsrc-for:
150 schema:name Banking, Finance and Investment
151 rdf:type schema:DefinedTerm
152 sg:person.01106420703.25 schema:affiliation grid-institutes:grid.462414.1
153 schema:familyName Sinha
154 schema:givenName Sitabhra
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106420703.25
156 rdf:type schema:Person
157 sg:person.0673751775.94 schema:affiliation grid-institutes:grid.462414.1
158 schema:familyName Easwaran
159 schema:givenName Soumya
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673751775.94
161 rdf:type schema:Person
162 grid-institutes:grid.418391.6 schema:alternateName Birla Institute of Technology and Science, 333031, Pilani, India
163 schema:name Birla Institute of Technology and Science, 333031, Pilani, India
164 rdf:type schema:Organization
165 grid-institutes:grid.462414.1 schema:alternateName The Institute of Mathematical Sciences, CIT Campus, Taramani, 600113, Chennai, India
166 schema:name The Institute of Mathematical Sciences, CIT Campus, Taramani, 600113, Chennai, India
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...