Multispectral Endoscopy to Identify Precancerous Lesions in Gastric Mucosa View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Sergio E. Martinez-Herrera , Yannick Benezeth , Matthieu Boffety , Jean-François Emile , Franck Marzani , Dominique Lamarque , François Goudail

ABSTRACT

Precancerous lesions are in many situations not visible during white light gastroendoscopy. Different approaches have been proposed based on light tissue interaction in order to improve the visualization by creating false color images. However, these systems are limited to few wavelengths. In this paper, we propose a multispectral gastroendoscopic system and a methodology to identify precancerous lesions. The multispectral images collected during gastroendoscopy are used to compute statistical features from their spectrum. Pooled variance t-test is used to rank the features in order to train 3 classifiers with different number of features. The 3 classifiers are Neural Networks using Generalized Relevance Learning Vector Quantization (GRLVQ), SVM with a Gaussian kernel and K-nn. The performance is compared based on their ability to identify precancerous lesions, using as quantitative index the accuracy, specificity and sensitivity. SVM presents the best performance, showing the effectiveness of the method. More... »

PAGES

43-51

References to SciGraph publications

  • 1992. Hierarchical model-based motion estimation in COMPUTER VISION — ECCV'92
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-07998-1_6

    DOI

    http://dx.doi.org/10.1007/978-3-319-07998-1_6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045135544


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Versailles Saint-Quentin-en-Yvelines University", 
              "id": "https://www.grid.ac/institutes/grid.12832.3a", 
              "name": [
                "Universit\u00e9 de Versailles Saint Quentin en Yvelines, Versailles, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Martinez-Herrera", 
            "givenName": "Sergio E.", 
            "id": "sg:person.013554503013.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013554503013.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Burgundy", 
              "id": "https://www.grid.ac/institutes/grid.5613.1", 
              "name": [
                "Le2i, Universit\u00e9 de Bourgogne, Dijon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benezeth", 
            "givenName": "Yannick", 
            "id": "sg:person.016115557367.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016115557367.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut d\u2019Optique Graduate School", 
              "id": "https://www.grid.ac/institutes/grid.425181.b", 
              "name": [
                "Institut d\u2019Optique Graduate School, Palaiseau, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Boffety", 
            "givenName": "Matthieu", 
            "id": "sg:person.01155755143.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155755143.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Versailles Saint-Quentin-en-Yvelines University", 
              "id": "https://www.grid.ac/institutes/grid.12832.3a", 
              "name": [
                "Universit\u00e9 de Versailles Saint Quentin en Yvelines, Versailles, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Emile", 
            "givenName": "Jean-Fran\u00e7ois", 
            "id": "sg:person.0610133233.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610133233.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Burgundy", 
              "id": "https://www.grid.ac/institutes/grid.5613.1", 
              "name": [
                "Le2i, Universit\u00e9 de Bourgogne, Dijon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marzani", 
            "givenName": "Franck", 
            "id": "sg:person.07657000121.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657000121.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Versailles Saint-Quentin-en-Yvelines University", 
              "id": "https://www.grid.ac/institutes/grid.12832.3a", 
              "name": [
                "Universit\u00e9 de Versailles Saint Quentin en Yvelines, Versailles, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lamarque", 
            "givenName": "Dominique", 
            "id": "sg:person.01060752353.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060752353.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut d\u2019Optique Graduate School", 
              "id": "https://www.grid.ac/institutes/grid.425181.b", 
              "name": [
                "Institut d\u2019Optique Graduate School, Palaiseau, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goudail", 
            "givenName": "Fran\u00e7ois", 
            "id": "sg:person.0662564376.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662564376.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1117/1.jbo.18.2.026010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001562796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-12-336156-1.50061-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003803373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3322/caac.20107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009055747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1751-2980.2011.00550.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018505625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compmedimag.2010.07.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024693071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0165-1684(89)90132-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029318692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0165-1684(89)90132-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029318692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-55426-2_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036175401", 
              "https://doi.org/10.1007/3-540-55426-2_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/1.1766301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037195886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1055/s-2003-40228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057422651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/50/8/004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059025965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1366/0003702981944571", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065265187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1366/0003702981944571", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065265187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sitis.2012.125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094038965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cbms.2013.6627778", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094204223"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014", 
        "datePublishedReg": "2014-01-01", 
        "description": "Precancerous lesions are in many situations not visible during white light gastroendoscopy. Different approaches have been proposed based on light tissue interaction in order to improve the visualization by creating false color images. However, these systems are limited to few wavelengths. In this paper, we propose a multispectral gastroendoscopic system and a methodology to identify precancerous lesions. The multispectral images collected during gastroendoscopy are used to compute statistical features from their spectrum. Pooled variance t-test is used to rank the features in order to train 3 classifiers with different number of features. The 3 classifiers are Neural Networks using Generalized Relevance Learning Vector Quantization (GRLVQ), SVM with a Gaussian kernel and K-nn. The performance is compared based on their ability to identify precancerous lesions, using as quantitative index the accuracy, specificity and sensitivity. SVM presents the best performance, showing the effectiveness of the method.", 
        "editor": [
          {
            "familyName": "Elmoataz", 
            "givenName": "Abderrahim", 
            "type": "Person"
          }, 
          {
            "familyName": "Lezoray", 
            "givenName": "Olivier", 
            "type": "Person"
          }, 
          {
            "familyName": "Nouboud", 
            "givenName": "Fathallah", 
            "type": "Person"
          }, 
          {
            "familyName": "Mammass", 
            "givenName": "Driss", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-07998-1_6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-07997-4", 
            "978-3-319-07998-1"
          ], 
          "name": "Image and Signal Processing", 
          "type": "Book"
        }, 
        "name": "Multispectral Endoscopy to Identify Precancerous Lesions in Gastric Mucosa", 
        "pagination": "43-51", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-07998-1_6"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d6fef86dd1740a27abae425e2194c9b7b29a28fe86f504c32605b96eac07c4b5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045135544"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-07998-1_6", 
          "https://app.dimensions.ai/details/publication/pub.1045135544"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T23:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000271.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-07998-1_6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07998-1_6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07998-1_6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07998-1_6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07998-1_6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    168 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-07998-1_6 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Ne23082040c0f45968ba23d33c2a9eedb
    4 schema:citation sg:pub.10.1007/3-540-55426-2_27
    5 https://doi.org/10.1016/0165-1684(89)90132-1
    6 https://doi.org/10.1016/b978-0-12-336156-1.50061-6
    7 https://doi.org/10.1016/j.compmedimag.2010.07.001
    8 https://doi.org/10.1055/s-2003-40228
    9 https://doi.org/10.1088/0031-9155/50/8/004
    10 https://doi.org/10.1109/cbms.2013.6627778
    11 https://doi.org/10.1109/sitis.2012.125
    12 https://doi.org/10.1111/j.1751-2980.2011.00550.x
    13 https://doi.org/10.1117/1.1766301
    14 https://doi.org/10.1117/1.jbo.18.2.026010
    15 https://doi.org/10.1366/0003702981944571
    16 https://doi.org/10.3322/caac.20107
    17 schema:datePublished 2014
    18 schema:datePublishedReg 2014-01-01
    19 schema:description Precancerous lesions are in many situations not visible during white light gastroendoscopy. Different approaches have been proposed based on light tissue interaction in order to improve the visualization by creating false color images. However, these systems are limited to few wavelengths. In this paper, we propose a multispectral gastroendoscopic system and a methodology to identify precancerous lesions. The multispectral images collected during gastroendoscopy are used to compute statistical features from their spectrum. Pooled variance t-test is used to rank the features in order to train 3 classifiers with different number of features. The 3 classifiers are Neural Networks using Generalized Relevance Learning Vector Quantization (GRLVQ), SVM with a Gaussian kernel and K-nn. The performance is compared based on their ability to identify precancerous lesions, using as quantitative index the accuracy, specificity and sensitivity. SVM presents the best performance, showing the effectiveness of the method.
    20 schema:editor Ne244ffd8c0d04875a2876b4775e4a6e0
    21 schema:genre chapter
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf Na87bd0f08bf54767a9918327afe839a1
    25 schema:name Multispectral Endoscopy to Identify Precancerous Lesions in Gastric Mucosa
    26 schema:pagination 43-51
    27 schema:productId N550b0cc63d2d48e28c9634605471a89c
    28 N9181adc2ce2444af80b30d828742e650
    29 Nb1c35ce08b664c0ab040a176fb6f8664
    30 schema:publisher Ne3d0e7512ca24b66bc84e40ba499e109
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045135544
    32 https://doi.org/10.1007/978-3-319-07998-1_6
    33 schema:sdDatePublished 2019-04-15T23:54
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher Nd735141fa9564ed783ba5bedbf6468f8
    36 schema:url http://link.springer.com/10.1007/978-3-319-07998-1_6
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset chapters
    39 rdf:type schema:Chapter
    40 N1867c81d02b24c1ca13e9ac40dcc3239 schema:familyName Mammass
    41 schema:givenName Driss
    42 rdf:type schema:Person
    43 N21e14b61a9a84777b90a853d128339ed rdf:first sg:person.016115557367.36
    44 rdf:rest N45a8b4d66b8f48f696cb950dd3be7d2e
    45 N2651974f92244e4c8ecd98018672efe1 rdf:first N1867c81d02b24c1ca13e9ac40dcc3239
    46 rdf:rest rdf:nil
    47 N45a8b4d66b8f48f696cb950dd3be7d2e rdf:first sg:person.01155755143.41
    48 rdf:rest Nadb0037199d444148e44fdaba00e8670
    49 N550b0cc63d2d48e28c9634605471a89c schema:name readcube_id
    50 schema:value d6fef86dd1740a27abae425e2194c9b7b29a28fe86f504c32605b96eac07c4b5
    51 rdf:type schema:PropertyValue
    52 N5a1094be4de1486389508dae1846eb33 schema:familyName Nouboud
    53 schema:givenName Fathallah
    54 rdf:type schema:Person
    55 N7ac74f75c77b4d35bff8807c1779ac60 rdf:first N5a1094be4de1486389508dae1846eb33
    56 rdf:rest N2651974f92244e4c8ecd98018672efe1
    57 N85122fe1494340838c29e8d77bd99af5 rdf:first sg:person.01060752353.05
    58 rdf:rest N963c94bc9f4e40408f6c87f2ffe0e484
    59 N9181adc2ce2444af80b30d828742e650 schema:name dimensions_id
    60 schema:value pub.1045135544
    61 rdf:type schema:PropertyValue
    62 N937fd3f6eabb42e1a56648c837d538ea rdf:first sg:person.07657000121.61
    63 rdf:rest N85122fe1494340838c29e8d77bd99af5
    64 N963c94bc9f4e40408f6c87f2ffe0e484 rdf:first sg:person.0662564376.25
    65 rdf:rest rdf:nil
    66 Na1abace1c04d48d7a082770b2bb57ac2 schema:familyName Elmoataz
    67 schema:givenName Abderrahim
    68 rdf:type schema:Person
    69 Na87bd0f08bf54767a9918327afe839a1 schema:isbn 978-3-319-07997-4
    70 978-3-319-07998-1
    71 schema:name Image and Signal Processing
    72 rdf:type schema:Book
    73 Nadb0037199d444148e44fdaba00e8670 rdf:first sg:person.0610133233.71
    74 rdf:rest N937fd3f6eabb42e1a56648c837d538ea
    75 Nb1c35ce08b664c0ab040a176fb6f8664 schema:name doi
    76 schema:value 10.1007/978-3-319-07998-1_6
    77 rdf:type schema:PropertyValue
    78 Nd4808359cb2a4132a92a4e107d4cc601 schema:familyName Lezoray
    79 schema:givenName Olivier
    80 rdf:type schema:Person
    81 Nd735141fa9564ed783ba5bedbf6468f8 schema:name Springer Nature - SN SciGraph project
    82 rdf:type schema:Organization
    83 Ne23082040c0f45968ba23d33c2a9eedb rdf:first sg:person.013554503013.55
    84 rdf:rest N21e14b61a9a84777b90a853d128339ed
    85 Ne244ffd8c0d04875a2876b4775e4a6e0 rdf:first Na1abace1c04d48d7a082770b2bb57ac2
    86 rdf:rest Nf0c94ab855a1496cba170b8fcc6aa93a
    87 Ne3d0e7512ca24b66bc84e40ba499e109 schema:location Cham
    88 schema:name Springer International Publishing
    89 rdf:type schema:Organisation
    90 Nf0c94ab855a1496cba170b8fcc6aa93a rdf:first Nd4808359cb2a4132a92a4e107d4cc601
    91 rdf:rest N7ac74f75c77b4d35bff8807c1779ac60
    92 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Information and Computing Sciences
    94 rdf:type schema:DefinedTerm
    95 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Artificial Intelligence and Image Processing
    97 rdf:type schema:DefinedTerm
    98 sg:person.01060752353.05 schema:affiliation https://www.grid.ac/institutes/grid.12832.3a
    99 schema:familyName Lamarque
    100 schema:givenName Dominique
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060752353.05
    102 rdf:type schema:Person
    103 sg:person.01155755143.41 schema:affiliation https://www.grid.ac/institutes/grid.425181.b
    104 schema:familyName Boffety
    105 schema:givenName Matthieu
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155755143.41
    107 rdf:type schema:Person
    108 sg:person.013554503013.55 schema:affiliation https://www.grid.ac/institutes/grid.12832.3a
    109 schema:familyName Martinez-Herrera
    110 schema:givenName Sergio E.
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013554503013.55
    112 rdf:type schema:Person
    113 sg:person.016115557367.36 schema:affiliation https://www.grid.ac/institutes/grid.5613.1
    114 schema:familyName Benezeth
    115 schema:givenName Yannick
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016115557367.36
    117 rdf:type schema:Person
    118 sg:person.0610133233.71 schema:affiliation https://www.grid.ac/institutes/grid.12832.3a
    119 schema:familyName Emile
    120 schema:givenName Jean-François
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610133233.71
    122 rdf:type schema:Person
    123 sg:person.0662564376.25 schema:affiliation https://www.grid.ac/institutes/grid.425181.b
    124 schema:familyName Goudail
    125 schema:givenName François
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662564376.25
    127 rdf:type schema:Person
    128 sg:person.07657000121.61 schema:affiliation https://www.grid.ac/institutes/grid.5613.1
    129 schema:familyName Marzani
    130 schema:givenName Franck
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657000121.61
    132 rdf:type schema:Person
    133 sg:pub.10.1007/3-540-55426-2_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036175401
    134 https://doi.org/10.1007/3-540-55426-2_27
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/0165-1684(89)90132-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029318692
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/b978-0-12-336156-1.50061-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003803373
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.compmedimag.2010.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024693071
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1055/s-2003-40228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057422651
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1088/0031-9155/50/8/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059025965
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/cbms.2013.6627778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094204223
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1109/sitis.2012.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094038965
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1111/j.1751-2980.2011.00550.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018505625
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1117/1.1766301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037195886
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1117/1.jbo.18.2.026010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001562796
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1366/0003702981944571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065265187
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.3322/caac.20107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009055747
    159 rdf:type schema:CreativeWork
    160 https://www.grid.ac/institutes/grid.12832.3a schema:alternateName Versailles Saint-Quentin-en-Yvelines University
    161 schema:name Université de Versailles Saint Quentin en Yvelines, Versailles, France
    162 rdf:type schema:Organization
    163 https://www.grid.ac/institutes/grid.425181.b schema:alternateName Institut d’Optique Graduate School
    164 schema:name Institut d’Optique Graduate School, Palaiseau, France
    165 rdf:type schema:Organization
    166 https://www.grid.ac/institutes/grid.5613.1 schema:alternateName University of Burgundy
    167 schema:name Le2i, Université de Bourgogne, Dijon, France
    168 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...