Ontology type: schema:Chapter Open Access: True
2014
AUTHORSClaude Touzet , Christopher Kermorvant , Hervé Glotin
ABSTRACTRecently, an important aspect of human visual word recognition has been characterized. The letter position is encoded in our brain using an explicit representation of order based on letter pairs: the open-bigram coding [15]. We hypothesize that spelling has evolved in order to minimize reading errors. Therefore, word recognition using bigrams — instead of letters — should be more efficient. First, we study the influence of the size of the neighborhood, which defines the number of bigrams per word, on the performance of the matching between bigrams and word. Our tests are conducted against one of the best recognition solutions used today by the industry, which matches letters to words. Secondly, we build a cortical map representation of the words in the bigram space — which implies numerous experiments in order to achieve a satisfactory projection. Third, we develop an ultra-fast version of the self-organizing map in order to achieve learning in minutes instead of months. More... »
PAGES303-312
Advances in Self-Organizing Maps and Learning Vector Quantization
ISBN
978-3-319-07694-2
978-3-319-07695-9
http://scigraph.springernature.com/pub.10.1007/978-3-319-07695-9_29
DOIhttp://dx.doi.org/10.1007/978-3-319-07695-9_29
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1006330125
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1702",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Cognitive Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology and Cognitive Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Aix-Marseille University",
"id": "https://www.grid.ac/institutes/grid.5399.6",
"name": [
"Aix-Marseille University (AMU), Lab. de Neurosciences Int\u00e9gratives et Adaptatives, LNIA UMR-CNRS 7260, P\u00f4le Cerveau-Comportement-Cognition, Marseille, France"
],
"type": "Organization"
},
"familyName": "Touzet",
"givenName": "Claude",
"id": "sg:person.01325002253.19",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325002253.19"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"A2iA SA (Analyse d\u2019Image & Intelligence Artificielle), Paris, France"
],
"type": "Organization"
},
"familyName": "Kermorvant",
"givenName": "Christopher",
"id": "sg:person.012122044013.88",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012122044013.88"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Institut Univ. de France (IUF) & Univ. Aix-Marseille (AMU), Univ. Toulon (UTLN), ENSAM, Lab. des Sciences de l\u2019Information et des Syst\u00e8mes (LSIS), UMR CNRS 7296, Toulon, France"
],
"type": "Organization"
},
"familyName": "Glotin",
"givenName": "Herv\u00e9",
"id": "sg:person.016622300103.82",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016622300103.82"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1080/09541440903031230",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001776915"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.patcog.2013.05.027",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006159945"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.patcog.2013.05.027",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006159945"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-74690-4_56",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009666800",
"https://doi.org/10.1007/978-3-540-74690-4_56"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-74690-4_56",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009666800",
"https://doi.org/10.1007/978-3-540-74690-4_56"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-34274-5_54",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015867953",
"https://doi.org/10.1007/978-3-642-34274-5_54"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1117/12.911981",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025780418"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0031-3203(95)00041-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032739122"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-22887-2_43",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039917286",
"https://doi.org/10.1007/978-3-642-22887-2_43"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-22887-2_43",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039917286",
"https://doi.org/10.1007/978-3-642-22887-2_43"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.tics.2005.05.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044479517"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0031-3203(00)00181-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046770893"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1027/1618-3169/a000132",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1056346633"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/34.745738",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061156907"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/5.726791",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061179979"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/iwfhr.2002.1030897",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093392819"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/das.2014.40",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094394300"
],
"type": "CreativeWork"
}
],
"datePublished": "2014",
"datePublishedReg": "2014-01-01",
"description": "Recently, an important aspect of human visual word recognition has been characterized. The letter position is encoded in our brain using an explicit representation of order based on letter pairs: the open-bigram coding [15]. We hypothesize that spelling has evolved in order to minimize reading errors. Therefore, word recognition using bigrams \u2014 instead of letters \u2014 should be more efficient. First, we study the influence of the size of the neighborhood, which defines the number of bigrams per word, on the performance of the matching between bigrams and word. Our tests are conducted against one of the best recognition solutions used today by the industry, which matches letters to words. Secondly, we build a cortical map representation of the words in the bigram space \u2014 which implies numerous experiments in order to achieve a satisfactory projection. Third, we develop an ultra-fast version of the self-organizing map in order to achieve learning in minutes instead of months.",
"editor": [
{
"familyName": "Villmann",
"givenName": "Thomas",
"type": "Person"
},
{
"familyName": "Schleif",
"givenName": "Frank-Michael",
"type": "Person"
},
{
"familyName": "Kaden",
"givenName": "Marika",
"type": "Person"
},
{
"familyName": "Lange",
"givenName": "Mandy",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-07695-9_29",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-319-07694-2",
"978-3-319-07695-9"
],
"name": "Advances in Self-Organizing Maps and Learning Vector Quantization",
"type": "Book"
},
"name": "A Biologically Plausible SOM Representation of the Orthographic Form of 50,000 French Words",
"pagination": "303-312",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-07695-9_29"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"1e26ec849a659617c36e31f570be7ce56b2045da2f622d589cdaefc82d3020ae"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1006330125"
]
}
],
"publisher": {
"location": "Cham",
"name": "Springer International Publishing",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-07695-9_29",
"https://app.dimensions.ai/details/publication/pub.1006330125"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T13:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000247.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-319-07695-9_29"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07695-9_29'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07695-9_29'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07695-9_29'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07695-9_29'
This table displays all metadata directly associated to this object as RDF triples.
143 TRIPLES
23 PREDICATES
41 URIs
20 LITERALS
8 BLANK NODES