A Biologically Plausible SOM Representation of the Orthographic Form of 50,000 French Words View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Claude Touzet , Christopher Kermorvant , Hervé Glotin

ABSTRACT

Recently, an important aspect of human visual word recognition has been characterized. The letter position is encoded in our brain using an explicit representation of order based on letter pairs: the open-bigram coding [15]. We hypothesize that spelling has evolved in order to minimize reading errors. Therefore, word recognition using bigrams — instead of letters — should be more efficient. First, we study the influence of the size of the neighborhood, which defines the number of bigrams per word, on the performance of the matching between bigrams and word. Our tests are conducted against one of the best recognition solutions used today by the industry, which matches letters to words. Secondly, we build a cortical map representation of the words in the bigram space — which implies numerous experiments in order to achieve a satisfactory projection. Third, we develop an ultra-fast version of the self-organizing map in order to achieve learning in minutes instead of months. More... »

PAGES

303-312

Book

TITLE

Advances in Self-Organizing Maps and Learning Vector Quantization

ISBN

978-3-319-07694-2
978-3-319-07695-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-07695-9_29

DOI

http://dx.doi.org/10.1007/978-3-319-07695-9_29

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006330125


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1702", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Aix-Marseille University", 
          "id": "https://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "Aix-Marseille University (AMU), Lab. de Neurosciences Int\u00e9gratives et Adaptatives, LNIA UMR-CNRS 7260, P\u00f4le Cerveau-Comportement-Cognition, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Touzet", 
        "givenName": "Claude", 
        "id": "sg:person.01325002253.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325002253.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "A2iA SA (Analyse d\u2019Image & Intelligence Artificielle), Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kermorvant", 
        "givenName": "Christopher", 
        "id": "sg:person.012122044013.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012122044013.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institut Univ. de France (IUF) & Univ. Aix-Marseille (AMU), Univ. Toulon (UTLN), ENSAM, Lab. des Sciences de l\u2019Information et des Syst\u00e8mes (LSIS), UMR CNRS 7296, Toulon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glotin", 
        "givenName": "Herv\u00e9", 
        "id": "sg:person.016622300103.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016622300103.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/09541440903031230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001776915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2013.05.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006159945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2013.05.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006159945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74690-4_56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009666800", 
          "https://doi.org/10.1007/978-3-540-74690-4_56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74690-4_56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009666800", 
          "https://doi.org/10.1007/978-3-540-74690-4_56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-34274-5_54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015867953", 
          "https://doi.org/10.1007/978-3-642-34274-5_54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.911981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025780418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(95)00041-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032739122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22887-2_43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039917286", 
          "https://doi.org/10.1007/978-3-642-22887-2_43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22887-2_43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039917286", 
          "https://doi.org/10.1007/978-3-642-22887-2_43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2005.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044479517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(00)00181-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046770893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1027/1618-3169/a000132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056346633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.745738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.726791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iwfhr.2002.1030897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093392819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/das.2014.40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094394300"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Recently, an important aspect of human visual word recognition has been characterized. The letter position is encoded in our brain using an explicit representation of order based on letter pairs: the open-bigram coding [15]. We hypothesize that spelling has evolved in order to minimize reading errors. Therefore, word recognition using bigrams \u2014 instead of letters \u2014 should be more efficient. First, we study the influence of the size of the neighborhood, which defines the number of bigrams per word, on the performance of the matching between bigrams and word. Our tests are conducted against one of the best recognition solutions used today by the industry, which matches letters to words. Secondly, we build a cortical map representation of the words in the bigram space \u2014 which implies numerous experiments in order to achieve a satisfactory projection. Third, we develop an ultra-fast version of the self-organizing map in order to achieve learning in minutes instead of months.", 
    "editor": [
      {
        "familyName": "Villmann", 
        "givenName": "Thomas", 
        "type": "Person"
      }, 
      {
        "familyName": "Schleif", 
        "givenName": "Frank-Michael", 
        "type": "Person"
      }, 
      {
        "familyName": "Kaden", 
        "givenName": "Marika", 
        "type": "Person"
      }, 
      {
        "familyName": "Lange", 
        "givenName": "Mandy", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-07695-9_29", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-07694-2", 
        "978-3-319-07695-9"
      ], 
      "name": "Advances in Self-Organizing Maps and Learning Vector Quantization", 
      "type": "Book"
    }, 
    "name": "A Biologically Plausible SOM Representation of the Orthographic Form of 50,000 French Words", 
    "pagination": "303-312", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-07695-9_29"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1e26ec849a659617c36e31f570be7ce56b2045da2f622d589cdaefc82d3020ae"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006330125"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-07695-9_29", 
      "https://app.dimensions.ai/details/publication/pub.1006330125"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000247.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-07695-9_29"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07695-9_29'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07695-9_29'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07695-9_29'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07695-9_29'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-07695-9_29 schema:about anzsrc-for:17
2 anzsrc-for:1702
3 schema:author Nb4870c58e5b84a31a9827fb770eded50
4 schema:citation sg:pub.10.1007/978-3-540-74690-4_56
5 sg:pub.10.1007/978-3-642-22887-2_43
6 sg:pub.10.1007/978-3-642-34274-5_54
7 https://doi.org/10.1016/0031-3203(95)00041-0
8 https://doi.org/10.1016/j.patcog.2013.05.027
9 https://doi.org/10.1016/j.tics.2005.05.004
10 https://doi.org/10.1016/s0031-3203(00)00181-3
11 https://doi.org/10.1027/1618-3169/a000132
12 https://doi.org/10.1080/09541440903031230
13 https://doi.org/10.1109/34.745738
14 https://doi.org/10.1109/5.726791
15 https://doi.org/10.1109/das.2014.40
16 https://doi.org/10.1109/iwfhr.2002.1030897
17 https://doi.org/10.1117/12.911981
18 schema:datePublished 2014
19 schema:datePublishedReg 2014-01-01
20 schema:description Recently, an important aspect of human visual word recognition has been characterized. The letter position is encoded in our brain using an explicit representation of order based on letter pairs: the open-bigram coding [15]. We hypothesize that spelling has evolved in order to minimize reading errors. Therefore, word recognition using bigrams — instead of letters — should be more efficient. First, we study the influence of the size of the neighborhood, which defines the number of bigrams per word, on the performance of the matching between bigrams and word. Our tests are conducted against one of the best recognition solutions used today by the industry, which matches letters to words. Secondly, we build a cortical map representation of the words in the bigram space — which implies numerous experiments in order to achieve a satisfactory projection. Third, we develop an ultra-fast version of the self-organizing map in order to achieve learning in minutes instead of months.
21 schema:editor Nc198c1835d0645f4947e9792268e7c25
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N82bd3ea1ea5849029d8f29b0681a8e70
26 schema:name A Biologically Plausible SOM Representation of the Orthographic Form of 50,000 French Words
27 schema:pagination 303-312
28 schema:productId N0dd8cc4c508444c4909afd40bc006214
29 Nda370250c5e94504b01534fafb6f5496
30 Nf3f28008ac6546b4a37d851ce8cecc05
31 schema:publisher Na5d2306bb2074e92985eb864008e7948
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006330125
33 https://doi.org/10.1007/978-3-319-07695-9_29
34 schema:sdDatePublished 2019-04-15T13:25
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N81768eec26384e2bbeb575911c78ae71
37 schema:url http://link.springer.com/10.1007/978-3-319-07695-9_29
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N0dd8cc4c508444c4909afd40bc006214 schema:name dimensions_id
42 schema:value pub.1006330125
43 rdf:type schema:PropertyValue
44 N122ffef85d7d46c2ab22e95af8afc048 rdf:first sg:person.012122044013.88
45 rdf:rest N9507279caa0346609d8d7f45bbe9201d
46 N317856a27518477c9ad656be3ab9abf9 rdf:first Nc624f251cc8f4f5a88f84f6d9934c060
47 rdf:rest N7aab7fb7b510431caf2d77bc148c3f7a
48 N3b338b4081764e8c864ae6c19695bdb2 schema:familyName Schleif
49 schema:givenName Frank-Michael
50 rdf:type schema:Person
51 N7aab7fb7b510431caf2d77bc148c3f7a rdf:first N84a8e100e8c44c6bbfe20fc2a4ad22bb
52 rdf:rest rdf:nil
53 N81768eec26384e2bbeb575911c78ae71 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N82bd3ea1ea5849029d8f29b0681a8e70 schema:isbn 978-3-319-07694-2
56 978-3-319-07695-9
57 schema:name Advances in Self-Organizing Maps and Learning Vector Quantization
58 rdf:type schema:Book
59 N84a8e100e8c44c6bbfe20fc2a4ad22bb schema:familyName Lange
60 schema:givenName Mandy
61 rdf:type schema:Person
62 N9507279caa0346609d8d7f45bbe9201d rdf:first sg:person.016622300103.82
63 rdf:rest rdf:nil
64 Na5d2306bb2074e92985eb864008e7948 schema:location Cham
65 schema:name Springer International Publishing
66 rdf:type schema:Organisation
67 Na6cb6fe86d914d42bca9db45640bd2c1 schema:familyName Villmann
68 schema:givenName Thomas
69 rdf:type schema:Person
70 Nb4870c58e5b84a31a9827fb770eded50 rdf:first sg:person.01325002253.19
71 rdf:rest N122ffef85d7d46c2ab22e95af8afc048
72 Nb85d8da29752415e84aae6631ef4ce72 schema:name Institut Univ. de France (IUF) & Univ. Aix-Marseille (AMU), Univ. Toulon (UTLN), ENSAM, Lab. des Sciences de l’Information et des Systèmes (LSIS), UMR CNRS 7296, Toulon, France
73 rdf:type schema:Organization
74 Nc198c1835d0645f4947e9792268e7c25 rdf:first Na6cb6fe86d914d42bca9db45640bd2c1
75 rdf:rest Nda92d1f8be534fc1b12714bbe98ee774
76 Nc624f251cc8f4f5a88f84f6d9934c060 schema:familyName Kaden
77 schema:givenName Marika
78 rdf:type schema:Person
79 Ncd415a928a5940f9811acaa8aa0efef3 schema:name A2iA SA (Analyse d’Image & Intelligence Artificielle), Paris, France
80 rdf:type schema:Organization
81 Nda370250c5e94504b01534fafb6f5496 schema:name doi
82 schema:value 10.1007/978-3-319-07695-9_29
83 rdf:type schema:PropertyValue
84 Nda92d1f8be534fc1b12714bbe98ee774 rdf:first N3b338b4081764e8c864ae6c19695bdb2
85 rdf:rest N317856a27518477c9ad656be3ab9abf9
86 Nf3f28008ac6546b4a37d851ce8cecc05 schema:name readcube_id
87 schema:value 1e26ec849a659617c36e31f570be7ce56b2045da2f622d589cdaefc82d3020ae
88 rdf:type schema:PropertyValue
89 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
90 schema:name Psychology and Cognitive Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:1702 schema:inDefinedTermSet anzsrc-for:
93 schema:name Cognitive Sciences
94 rdf:type schema:DefinedTerm
95 sg:person.012122044013.88 schema:affiliation Ncd415a928a5940f9811acaa8aa0efef3
96 schema:familyName Kermorvant
97 schema:givenName Christopher
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012122044013.88
99 rdf:type schema:Person
100 sg:person.01325002253.19 schema:affiliation https://www.grid.ac/institutes/grid.5399.6
101 schema:familyName Touzet
102 schema:givenName Claude
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325002253.19
104 rdf:type schema:Person
105 sg:person.016622300103.82 schema:affiliation Nb85d8da29752415e84aae6631ef4ce72
106 schema:familyName Glotin
107 schema:givenName Hervé
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016622300103.82
109 rdf:type schema:Person
110 sg:pub.10.1007/978-3-540-74690-4_56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009666800
111 https://doi.org/10.1007/978-3-540-74690-4_56
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/978-3-642-22887-2_43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039917286
114 https://doi.org/10.1007/978-3-642-22887-2_43
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/978-3-642-34274-5_54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015867953
117 https://doi.org/10.1007/978-3-642-34274-5_54
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0031-3203(95)00041-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032739122
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.patcog.2013.05.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006159945
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.tics.2005.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044479517
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0031-3203(00)00181-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046770893
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1027/1618-3169/a000132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056346633
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1080/09541440903031230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001776915
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/34.745738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156907
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/5.726791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179979
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/das.2014.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094394300
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/iwfhr.2002.1030897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093392819
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1117/12.911981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025780418
140 rdf:type schema:CreativeWork
141 https://www.grid.ac/institutes/grid.5399.6 schema:alternateName Aix-Marseille University
142 schema:name Aix-Marseille University (AMU), Lab. de Neurosciences Intégratives et Adaptatives, LNIA UMR-CNRS 7260, Pôle Cerveau-Comportement-Cognition, Marseille, France
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...