YASA: Yet Another Time Series Segmentation Algorithm for Anomaly Detection in Big Data Problems View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Luis Martí , Nayat Sanchez-Pi , José Manuel Molina , Ana Cristina Bicharra Garcia

ABSTRACT

Time series patterns analysis had recently attracted the attention of the research community for real-world applications. Petroleum industry is one of the application contexts where these problems are present, for instance for anomaly detection. Offshore petroleum platforms rely on heavy turbomachines for its extraction, pumping and generation operations. Frequently, these machines are intensively monitored by hundreds of sensors each, which send measurements with a high frequency to a concentration hub. Handling these data calls for a holistic approach, as sensor data is frequently noisy, unreliable, inconsistent with a priori problem axioms, and of a massive amount. For the anomalies detection problems in turbomachinery, it is essential to segment the dataset available in order to automatically discover the operational regime of the machine in the recent past. In this paper we propose a novel time series segmentation algorithm adaptable to big data problems and that is capable of handling the high volume of data involved in problem contexts. As part of the paper we describe our proposal, analyzing its computational complexity. We also perform empirical studies comparing our algorithm with similar approaches when applied to benchmark problems and a real-life application related to oil platform turbomachinery anomaly detection. More... »

PAGES

697-708

References to SciGraph publications

  • 1999-06-11. Knowledge-Based Event Detection in Complex Time Series Data in ARTIFICIAL INTELLIGENCE IN MEDICINE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-07617-1_61

    DOI

    http://dx.doi.org/10.1007/978-3-319-07617-1_61

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1007148318


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Pontifical Catholic University of Rio de Janeiro", 
              "id": "https://www.grid.ac/institutes/grid.4839.6", 
              "name": [
                "Dept. of Electrical Engineering, Pontif\u00edcia Universidade Cat\u00f3lica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mart\u00ed", 
            "givenName": "Luis", 
            "id": "sg:person.013310403353.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013310403353.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Instituto de L\u00f3gica, Filosofia e Teoria da Ci\u00e9ncia (ILTC), Niter\u00f3i, RJ, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sanchez-Pi", 
            "givenName": "Nayat", 
            "id": "sg:person.07411775305.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07411775305.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Carlos III University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.7840.b", 
              "name": [
                "Dept. of Informatics, Universidad Carlos III de Madrid, Colmenarejo, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Molina", 
            "givenName": "Jos\u00e9 Manuel", 
            "id": "sg:person.010563353054.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010563353054.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fluminense Federal University", 
              "id": "https://www.grid.ac/institutes/grid.411173.1", 
              "name": [
                "ADDLabs, Fluminense Federal University, Niter\u00f3i, RJ, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garcia", 
            "givenName": "Ana Cristina Bicharra", 
            "id": "sg:person.07430767131.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07430767131.99"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-48720-4_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005051965", 
              "https://doi.org/10.1007/3-540-48720-4_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48720-4_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005051965", 
              "https://doi.org/10.1007/3-540-48720-4_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/262839.263080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009853770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aoms/1177730491", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011120195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1541880.1541882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030762489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/003465397557132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036158081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1971.10482337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058300810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2002.1033211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0129065711002833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062899275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789812565402_0001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088718252"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1.9781611972764.33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088800108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1.9781611972771.59", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088800219"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014", 
        "datePublishedReg": "2014-01-01", 
        "description": "Time series patterns analysis had recently attracted the attention of the research community for real-world applications. Petroleum industry is one of the application contexts where these problems are present, for instance for anomaly detection. Offshore petroleum platforms rely on heavy turbomachines for its extraction, pumping and generation operations. Frequently, these machines are intensively monitored by hundreds of sensors each, which send measurements with a high frequency to a concentration hub. Handling these data calls for a holistic approach, as sensor data is frequently noisy, unreliable, inconsistent with a priori problem axioms, and of a massive amount. For the anomalies detection problems in turbomachinery, it is essential to segment the dataset available in order to automatically discover the operational regime of the machine in the recent past. In this paper we propose a novel time series segmentation algorithm adaptable to big data problems and that is capable of handling the high volume of data involved in problem contexts. As part of the paper we describe our proposal, analyzing its computational complexity. We also perform empirical studies comparing our algorithm with similar approaches when applied to benchmark problems and a real-life application related to oil platform turbomachinery anomaly detection.", 
        "editor": [
          {
            "familyName": "Polycarpou", 
            "givenName": "Marios", 
            "type": "Person"
          }, 
          {
            "familyName": "de Carvalho", 
            "givenName": "Andr\u00e9 C. P. L. F.", 
            "type": "Person"
          }, 
          {
            "familyName": "Pan", 
            "givenName": "Jeng-Shyang", 
            "type": "Person"
          }, 
          {
            "familyName": "Wo\u017aniak", 
            "givenName": "Micha\u0142", 
            "type": "Person"
          }, 
          {
            "familyName": "Quintian", 
            "givenName": "H\u00e9ctor", 
            "type": "Person"
          }, 
          {
            "familyName": "Corchado", 
            "givenName": "Emilio", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-07617-1_61", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-319-07616-4", 
            "978-3-319-07617-1"
          ], 
          "name": "Hybrid Artificial Intelligence Systems", 
          "type": "Book"
        }, 
        "name": "YASA: Yet Another Time Series Segmentation Algorithm for Anomaly Detection in Big Data Problems", 
        "pagination": "697-708", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-07617-1_61"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "220cafb4283d2f060ef9cd45e02639e0cc70104ba1c7343c2bd3125d534d0f16"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1007148318"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-07617-1_61", 
          "https://app.dimensions.ai/details/publication/pub.1007148318"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T22:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000247.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-07617-1_61"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07617-1_61'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07617-1_61'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07617-1_61'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07617-1_61'


     

    This table displays all metadata directly associated to this object as RDF triples.

    153 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-07617-1_61 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N78bc6a9dc3a44064b38e1f9f96fa362e
    4 schema:citation sg:pub.10.1007/3-540-48720-4_30
    5 https://doi.org/10.1080/01621459.1971.10482337
    6 https://doi.org/10.1109/tpami.2002.1033211
    7 https://doi.org/10.1137/1.9781611972764.33
    8 https://doi.org/10.1137/1.9781611972771.59
    9 https://doi.org/10.1142/9789812565402_0001
    10 https://doi.org/10.1142/s0129065711002833
    11 https://doi.org/10.1145/1541880.1541882
    12 https://doi.org/10.1145/262839.263080
    13 https://doi.org/10.1162/003465397557132
    14 https://doi.org/10.1214/aoms/1177730491
    15 schema:datePublished 2014
    16 schema:datePublishedReg 2014-01-01
    17 schema:description Time series patterns analysis had recently attracted the attention of the research community for real-world applications. Petroleum industry is one of the application contexts where these problems are present, for instance for anomaly detection. Offshore petroleum platforms rely on heavy turbomachines for its extraction, pumping and generation operations. Frequently, these machines are intensively monitored by hundreds of sensors each, which send measurements with a high frequency to a concentration hub. Handling these data calls for a holistic approach, as sensor data is frequently noisy, unreliable, inconsistent with a priori problem axioms, and of a massive amount. For the anomalies detection problems in turbomachinery, it is essential to segment the dataset available in order to automatically discover the operational regime of the machine in the recent past. In this paper we propose a novel time series segmentation algorithm adaptable to big data problems and that is capable of handling the high volume of data involved in problem contexts. As part of the paper we describe our proposal, analyzing its computational complexity. We also perform empirical studies comparing our algorithm with similar approaches when applied to benchmark problems and a real-life application related to oil platform turbomachinery anomaly detection.
    18 schema:editor N742801dedad841078c0dcad71a0677b7
    19 schema:genre chapter
    20 schema:inLanguage en
    21 schema:isAccessibleForFree true
    22 schema:isPartOf Nc10fb62945b44fc885549e2de7884e84
    23 schema:name YASA: Yet Another Time Series Segmentation Algorithm for Anomaly Detection in Big Data Problems
    24 schema:pagination 697-708
    25 schema:productId N38017bfb53be4369b3d5997b4a97074a
    26 Na9bf68360aad4dad932b09d71243bd66
    27 Ncf9428096164466480d44ad3e8d24701
    28 schema:publisher Na520dbd0c9dc46cc9b34776f6eb639da
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007148318
    30 https://doi.org/10.1007/978-3-319-07617-1_61
    31 schema:sdDatePublished 2019-04-15T22:53
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher N57657d140610488697f020d69dd15067
    34 schema:url http://link.springer.com/10.1007/978-3-319-07617-1_61
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset chapters
    37 rdf:type schema:Chapter
    38 N38017bfb53be4369b3d5997b4a97074a schema:name doi
    39 schema:value 10.1007/978-3-319-07617-1_61
    40 rdf:type schema:PropertyValue
    41 N57657d140610488697f020d69dd15067 schema:name Springer Nature - SN SciGraph project
    42 rdf:type schema:Organization
    43 N6575c2eefa7049a6ab3520c5f8f572ef rdf:first Nf2ad90ab7cc245e3b20d9e53377f440e
    44 rdf:rest N73cda05d27f2447b885fde5db084e364
    45 N73cda05d27f2447b885fde5db084e364 rdf:first Ne8361d5ff8e24fe3910b335e8d440458
    46 rdf:rest N783176dd3ca64112a961a81e9820c7c9
    47 N742801dedad841078c0dcad71a0677b7 rdf:first Nbd7e3a3b5c744046a0370db1318e5972
    48 rdf:rest Ndbff2a2070844c7684db337397d4dfb8
    49 N783176dd3ca64112a961a81e9820c7c9 rdf:first Nc3553fbd93614be2986cecfb57ffd781
    50 rdf:rest rdf:nil
    51 N78bc6a9dc3a44064b38e1f9f96fa362e rdf:first sg:person.013310403353.54
    52 rdf:rest Nf6380241bc024178867232ffb43d1f02
    53 N90e91f1370354c7e8ff357ad4617ac99 schema:name Instituto de Lógica, Filosofia e Teoria da Ciéncia (ILTC), Niterói, RJ, Brazil
    54 rdf:type schema:Organization
    55 N9620541025c7435384ffb7ec6f419607 rdf:first sg:person.07430767131.99
    56 rdf:rest rdf:nil
    57 N9e75623b75db42e6a529f480daa99869 rdf:first sg:person.010563353054.10
    58 rdf:rest N9620541025c7435384ffb7ec6f419607
    59 Na030e823d8c54db1873a30a2e12d59b3 schema:familyName Pan
    60 schema:givenName Jeng-Shyang
    61 rdf:type schema:Person
    62 Na520dbd0c9dc46cc9b34776f6eb639da schema:location Cham
    63 schema:name Springer International Publishing
    64 rdf:type schema:Organisation
    65 Na9bf68360aad4dad932b09d71243bd66 schema:name dimensions_id
    66 schema:value pub.1007148318
    67 rdf:type schema:PropertyValue
    68 Nbd7e3a3b5c744046a0370db1318e5972 schema:familyName Polycarpou
    69 schema:givenName Marios
    70 rdf:type schema:Person
    71 Nc10fb62945b44fc885549e2de7884e84 schema:isbn 978-3-319-07616-4
    72 978-3-319-07617-1
    73 schema:name Hybrid Artificial Intelligence Systems
    74 rdf:type schema:Book
    75 Nc3553fbd93614be2986cecfb57ffd781 schema:familyName Corchado
    76 schema:givenName Emilio
    77 rdf:type schema:Person
    78 Nc9edcf2cb69d4235a847eb6813debed3 rdf:first Na030e823d8c54db1873a30a2e12d59b3
    79 rdf:rest N6575c2eefa7049a6ab3520c5f8f572ef
    80 Ncf9428096164466480d44ad3e8d24701 schema:name readcube_id
    81 schema:value 220cafb4283d2f060ef9cd45e02639e0cc70104ba1c7343c2bd3125d534d0f16
    82 rdf:type schema:PropertyValue
    83 Ndbff2a2070844c7684db337397d4dfb8 rdf:first Nf253a1dd25cb4d579f6b1973bca65587
    84 rdf:rest Nc9edcf2cb69d4235a847eb6813debed3
    85 Ne8361d5ff8e24fe3910b335e8d440458 schema:familyName Quintian
    86 schema:givenName Héctor
    87 rdf:type schema:Person
    88 Nf253a1dd25cb4d579f6b1973bca65587 schema:familyName de Carvalho
    89 schema:givenName André C. P. L. F.
    90 rdf:type schema:Person
    91 Nf2ad90ab7cc245e3b20d9e53377f440e schema:familyName Woźniak
    92 schema:givenName Michał
    93 rdf:type schema:Person
    94 Nf6380241bc024178867232ffb43d1f02 rdf:first sg:person.07411775305.08
    95 rdf:rest N9e75623b75db42e6a529f480daa99869
    96 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Information and Computing Sciences
    98 rdf:type schema:DefinedTerm
    99 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Artificial Intelligence and Image Processing
    101 rdf:type schema:DefinedTerm
    102 sg:person.010563353054.10 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
    103 schema:familyName Molina
    104 schema:givenName José Manuel
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010563353054.10
    106 rdf:type schema:Person
    107 sg:person.013310403353.54 schema:affiliation https://www.grid.ac/institutes/grid.4839.6
    108 schema:familyName Martí
    109 schema:givenName Luis
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013310403353.54
    111 rdf:type schema:Person
    112 sg:person.07411775305.08 schema:affiliation N90e91f1370354c7e8ff357ad4617ac99
    113 schema:familyName Sanchez-Pi
    114 schema:givenName Nayat
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07411775305.08
    116 rdf:type schema:Person
    117 sg:person.07430767131.99 schema:affiliation https://www.grid.ac/institutes/grid.411173.1
    118 schema:familyName Garcia
    119 schema:givenName Ana Cristina Bicharra
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07430767131.99
    121 rdf:type schema:Person
    122 sg:pub.10.1007/3-540-48720-4_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005051965
    123 https://doi.org/10.1007/3-540-48720-4_30
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1080/01621459.1971.10482337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058300810
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1109/tpami.2002.1033211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742416
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1137/1.9781611972764.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800108
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1137/1.9781611972771.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800219
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1142/9789812565402_0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088718252
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1142/s0129065711002833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062899275
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1145/1541880.1541882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030762489
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1145/262839.263080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009853770
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1162/003465397557132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036158081
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1214/aoms/1177730491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011120195
    144 rdf:type schema:CreativeWork
    145 https://www.grid.ac/institutes/grid.411173.1 schema:alternateName Fluminense Federal University
    146 schema:name ADDLabs, Fluminense Federal University, Niterói, RJ, Brazil
    147 rdf:type schema:Organization
    148 https://www.grid.ac/institutes/grid.4839.6 schema:alternateName Pontifical Catholic University of Rio de Janeiro
    149 schema:name Dept. of Electrical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
    150 rdf:type schema:Organization
    151 https://www.grid.ac/institutes/grid.7840.b schema:alternateName Carlos III University of Madrid
    152 schema:name Dept. of Informatics, Universidad Carlos III de Madrid, Colmenarejo, Madrid, Spain
    153 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...