Multilayer Neural Network with Multi-Valued Neurons in Time Series Forecasting of Oil Production View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Igor Aizenberg , Leonid Sheremetov , Luis Villa-Vargas

ABSTRACT

In this paper, we discuss the long-term time series forecasting using a Multilayer Neural Network with Multi-Valued Neurons (MLMVN). This is complex-valued neural network with a derivative-free backpropagation learning algorithm. We evaluate the proposed approach using a real-world data set describing the dynamic behavior of an oilfield asset located in the coastal swamps of the Gulf of Mexico. We show that MLMVN can be efficiently applied to univariate and multivariate multi-step ahead prediction of reservoir dynamics. This paper is not only intended for proposing a novel model of forecasting but to study carefully several aspects of the application of ANN models to time series forecasting that could be of the interest for pattern recognition community. More... »

PAGES

61-70

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-07491-7_7

DOI

http://dx.doi.org/10.1007/978-3-319-07491-7_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027073746


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Texas A&M University \u2013 Texarkana", 
          "id": "https://www.grid.ac/institutes/grid.264762.3", 
          "name": [
            "Texas A&M University-Texarkana, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aizenberg", 
        "givenName": "Igor", 
        "id": "sg:person.010651634015.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010651634015.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mexican Institute of Petroleum", 
          "id": "https://www.grid.ac/institutes/grid.419156.e", 
          "name": [
            "Mexican Petroleum Institute, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sheremetov", 
        "givenName": "Leonid", 
        "id": "sg:person.012761034665.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012761034665.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Polit\u00e9cnico Nacional", 
          "id": "https://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "Computer Science Research Center of the IPN, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Villa-Vargas", 
        "givenName": "Luis", 
        "id": "sg:person.015303642311.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015303642311.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.patrec.2013.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030594886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-27632-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030953750", 
          "https://doi.org/10.1007/978-3-642-27632-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-27632-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030953750", 
          "https://doi.org/10.1007/978-3-642-27632-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-31182-3_55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037945160", 
          "https://doi.org/10.1007/3-540-31182-3_55"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2007.02.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039129995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-006-0075-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049275324", 
          "https://doi.org/10.1007/s00500-006-0075-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-006-0075-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049275324", 
          "https://doi.org/10.1007/s00500-006-0075-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2007.914158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5120/12466-8834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072594954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cnna.1992.274330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086276533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/68801-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096947944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/149594-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096982444"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "In this paper, we discuss the long-term time series forecasting using a Multilayer Neural Network with Multi-Valued Neurons (MLMVN). This is complex-valued neural network with a derivative-free backpropagation learning algorithm. We evaluate the proposed approach using a real-world data set describing the dynamic behavior of an oilfield asset located in the coastal swamps of the Gulf of Mexico. We show that MLMVN can be efficiently applied to univariate and multivariate multi-step ahead prediction of reservoir dynamics. This paper is not only intended for proposing a novel model of forecasting but to study carefully several aspects of the application of ANN models to time series forecasting that could be of the interest for pattern recognition community.", 
    "editor": [
      {
        "familyName": "Mart\u00ednez-Trinidad", 
        "givenName": "Jos\u00e9 Francisco", 
        "type": "Person"
      }, 
      {
        "familyName": "Carrasco-Ochoa", 
        "givenName": "Jes\u00fas Ariel", 
        "type": "Person"
      }, 
      {
        "familyName": "Olvera-Lopez", 
        "givenName": "Jos\u00e9 Arturo", 
        "type": "Person"
      }, 
      {
        "familyName": "Salas-Rodr\u00edguez", 
        "givenName": "Joaqu\u00edn", 
        "type": "Person"
      }, 
      {
        "familyName": "Suen", 
        "givenName": "Ching Y.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-07491-7_7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-07490-0", 
        "978-3-319-07491-7"
      ], 
      "name": "Pattern Recognition", 
      "type": "Book"
    }, 
    "name": "Multilayer Neural Network with Multi-Valued Neurons in Time Series Forecasting of Oil Production", 
    "pagination": "61-70", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-07491-7_7"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "80f8b2ec0cc32ddd5a077bafea4d304ffde0913f945d3f80ca491e09b6068125"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027073746"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-07491-7_7", 
      "https://app.dimensions.ai/details/publication/pub.1027073746"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000260.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-07491-7_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07491-7_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07491-7_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07491-7_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07491-7_7'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-07491-7_7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N53daca5bcfcd493982690238774c3973
4 schema:citation sg:pub.10.1007/3-540-31182-3_55
5 sg:pub.10.1007/978-3-642-27632-3
6 sg:pub.10.1007/s00500-006-0075-5
7 https://doi.org/10.1016/j.asoc.2007.02.020
8 https://doi.org/10.1016/j.patrec.2013.11.008
9 https://doi.org/10.1109/cnna.1992.274330
10 https://doi.org/10.1109/tnn.2007.914158
11 https://doi.org/10.2118/149594-ms
12 https://doi.org/10.2118/68801-ms
13 https://doi.org/10.5120/12466-8834
14 schema:datePublished 2014
15 schema:datePublishedReg 2014-01-01
16 schema:description In this paper, we discuss the long-term time series forecasting using a Multilayer Neural Network with Multi-Valued Neurons (MLMVN). This is complex-valued neural network with a derivative-free backpropagation learning algorithm. We evaluate the proposed approach using a real-world data set describing the dynamic behavior of an oilfield asset located in the coastal swamps of the Gulf of Mexico. We show that MLMVN can be efficiently applied to univariate and multivariate multi-step ahead prediction of reservoir dynamics. This paper is not only intended for proposing a novel model of forecasting but to study carefully several aspects of the application of ANN models to time series forecasting that could be of the interest for pattern recognition community.
17 schema:editor N42ad5d96d7b64e1d836615da6358f538
18 schema:genre chapter
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf Nb703b3022b24446988234c50817ce539
22 schema:name Multilayer Neural Network with Multi-Valued Neurons in Time Series Forecasting of Oil Production
23 schema:pagination 61-70
24 schema:productId N0411ea47b5144425a91770786e2e99da
25 N573bf4b36fdc440ba31d431d3737b5b8
26 N575f2449cecf43f29b0834241aaa4a4d
27 schema:publisher Nd6099ad2803645058cfd964dc2c76228
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027073746
29 https://doi.org/10.1007/978-3-319-07491-7_7
30 schema:sdDatePublished 2019-04-15T10:34
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N8ee33bce8a514cb986761f60ad723b8c
33 schema:url http://link.springer.com/10.1007/978-3-319-07491-7_7
34 sgo:license sg:explorer/license/
35 sgo:sdDataset chapters
36 rdf:type schema:Chapter
37 N0411ea47b5144425a91770786e2e99da schema:name doi
38 schema:value 10.1007/978-3-319-07491-7_7
39 rdf:type schema:PropertyValue
40 N3338826a7a4145d09887c3fb8781b41b schema:familyName Suen
41 schema:givenName Ching Y.
42 rdf:type schema:Person
43 N37c6597c99054e89bbb80b57a0e53b11 schema:familyName Olvera-Lopez
44 schema:givenName José Arturo
45 rdf:type schema:Person
46 N42ad5d96d7b64e1d836615da6358f538 rdf:first N7fe562fafcd6404280fd34edb5a50373
47 rdf:rest N4e3b41a4c6d44d02badc6793655922e9
48 N4e3b41a4c6d44d02badc6793655922e9 rdf:first Nac49b970588f43c68ef11607742e87a1
49 rdf:rest N8d9704b0fd654a17820bb4452f442658
50 N53daca5bcfcd493982690238774c3973 rdf:first sg:person.010651634015.21
51 rdf:rest Nb5f4673e22cf4b03a5f87a53339d0c3a
52 N573bf4b36fdc440ba31d431d3737b5b8 schema:name readcube_id
53 schema:value 80f8b2ec0cc32ddd5a077bafea4d304ffde0913f945d3f80ca491e09b6068125
54 rdf:type schema:PropertyValue
55 N575f2449cecf43f29b0834241aaa4a4d schema:name dimensions_id
56 schema:value pub.1027073746
57 rdf:type schema:PropertyValue
58 N7adf32d8139a4507a9d2d1c557dc0a7d schema:familyName Salas-Rodríguez
59 schema:givenName Joaquín
60 rdf:type schema:Person
61 N7fe562fafcd6404280fd34edb5a50373 schema:familyName Martínez-Trinidad
62 schema:givenName José Francisco
63 rdf:type schema:Person
64 N8af99bac2b5249e2b3c1073d42b8614a rdf:first N7adf32d8139a4507a9d2d1c557dc0a7d
65 rdf:rest Nd0be3ccc62794e4f9961fb2627bf3aff
66 N8d9704b0fd654a17820bb4452f442658 rdf:first N37c6597c99054e89bbb80b57a0e53b11
67 rdf:rest N8af99bac2b5249e2b3c1073d42b8614a
68 N8ee33bce8a514cb986761f60ad723b8c schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Nac49b970588f43c68ef11607742e87a1 schema:familyName Carrasco-Ochoa
71 schema:givenName Jesús Ariel
72 rdf:type schema:Person
73 Nb229c19778ab40d68bbe049aa90939b3 rdf:first sg:person.015303642311.13
74 rdf:rest rdf:nil
75 Nb5f4673e22cf4b03a5f87a53339d0c3a rdf:first sg:person.012761034665.28
76 rdf:rest Nb229c19778ab40d68bbe049aa90939b3
77 Nb703b3022b24446988234c50817ce539 schema:isbn 978-3-319-07490-0
78 978-3-319-07491-7
79 schema:name Pattern Recognition
80 rdf:type schema:Book
81 Nd0be3ccc62794e4f9961fb2627bf3aff rdf:first N3338826a7a4145d09887c3fb8781b41b
82 rdf:rest rdf:nil
83 Nd6099ad2803645058cfd964dc2c76228 schema:location Cham
84 schema:name Springer International Publishing
85 rdf:type schema:Organisation
86 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
87 schema:name Information and Computing Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
90 schema:name Artificial Intelligence and Image Processing
91 rdf:type schema:DefinedTerm
92 sg:person.010651634015.21 schema:affiliation https://www.grid.ac/institutes/grid.264762.3
93 schema:familyName Aizenberg
94 schema:givenName Igor
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010651634015.21
96 rdf:type schema:Person
97 sg:person.012761034665.28 schema:affiliation https://www.grid.ac/institutes/grid.419156.e
98 schema:familyName Sheremetov
99 schema:givenName Leonid
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012761034665.28
101 rdf:type schema:Person
102 sg:person.015303642311.13 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
103 schema:familyName Villa-Vargas
104 schema:givenName Luis
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015303642311.13
106 rdf:type schema:Person
107 sg:pub.10.1007/3-540-31182-3_55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037945160
108 https://doi.org/10.1007/3-540-31182-3_55
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/978-3-642-27632-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030953750
111 https://doi.org/10.1007/978-3-642-27632-3
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s00500-006-0075-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049275324
114 https://doi.org/10.1007/s00500-006-0075-5
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.asoc.2007.02.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039129995
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.patrec.2013.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030594886
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/cnna.1992.274330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086276533
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/tnn.2007.914158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717348
123 rdf:type schema:CreativeWork
124 https://doi.org/10.2118/149594-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096982444
125 rdf:type schema:CreativeWork
126 https://doi.org/10.2118/68801-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096947944
127 rdf:type schema:CreativeWork
128 https://doi.org/10.5120/12466-8834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072594954
129 rdf:type schema:CreativeWork
130 https://www.grid.ac/institutes/grid.264762.3 schema:alternateName Texas A&M University – Texarkana
131 schema:name Texas A&M University-Texarkana, USA
132 rdf:type schema:Organization
133 https://www.grid.ac/institutes/grid.418275.d schema:alternateName Instituto Politécnico Nacional
134 schema:name Computer Science Research Center of the IPN, Mexico
135 rdf:type schema:Organization
136 https://www.grid.ac/institutes/grid.419156.e schema:alternateName Mexican Institute of Petroleum
137 schema:name Mexican Petroleum Institute, Mexico
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...