Towards a Data Warehouse Fed with Web Services View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

John Samuel

ABSTRACT

The role of data warehouse for business analytics cannot be undermined for any enterprise, irrespective of its size. But the growing dependence on web services has resulted in a situation where the enterprise data is managed by multiple, autonomous service providers. The goal of our work is to investigate and devise an approach to address the trade-off between scalability and adaptability in large scale integration with numerous ever-evolving web services. We present our prototype DaWeS (Data warehouse fed with Web Services) and explore how ETL using the mediation approach benefits this trade-off for enterprises with complex data warehousing requirements. The semantic web research community has proposed various standards like WSDL, WADL, hRESTS, SAWSDL for describing web service interface (API) the usage of which could have solved our requirement of automated integration. DaWeS looks to fill the current gap between the industry and research community by taking into account the key characteristics of the aforementioned description languages and using a declarative approach in order to reduce the manual effort. We also present to the semantic web research community the optimization heuristics (to reduce the API operation calls) and semantic challenges (auto-adaptability especially in the wake of an API change) devised while building DaWeS. More... »

PAGES

874-884

Book

TITLE

The Semantic Web: Trends and Challenges

ISBN

978-3-319-07442-9
978-3-319-07443-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-07443-6_61

DOI

http://dx.doi.org/10.1007/978-3-319-07443-6_61

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015832704


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "LIMOS, CNRS, Blaise Pascal University, Aubi\u00e8re, France", 
          "id": "http://www.grid.ac/institutes/grid.503317.3", 
          "name": [
            "LIMOS, CNRS, Blaise Pascal University, Aubi\u00e8re, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Samuel", 
        "givenName": "John", 
        "id": "sg:person.011221430511.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011221430511.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "The role of data warehouse for business analytics cannot be undermined for any enterprise, irrespective of its size. But the growing dependence on web services has resulted in a situation where the enterprise data is managed by multiple, autonomous service providers. The goal of our work is to investigate and devise an approach to address the trade-off between scalability and adaptability in large scale integration with numerous ever-evolving web services. We present our prototype DaWeS (Data warehouse fed with Web Services) and explore how ETL using the mediation approach benefits this trade-off for enterprises with complex data warehousing requirements. The semantic web research community has proposed various standards like WSDL, WADL, hRESTS, SAWSDL for describing web service interface (API) the usage of which could have solved our requirement of automated integration. DaWeS looks to fill the current gap between the industry and research community by taking into account the key characteristics of the aforementioned description languages and using a declarative approach in order to reduce the manual effort. We also present to the semantic web research community the optimization heuristics (to reduce the API operation calls) and semantic challenges (auto-adaptability especially in the wake of an API change) devised while building DaWeS.", 
    "editor": [
      {
        "familyName": "Presutti", 
        "givenName": "Valentina", 
        "type": "Person"
      }, 
      {
        "familyName": "d\u2019Amato", 
        "givenName": "Claudia", 
        "type": "Person"
      }, 
      {
        "familyName": "Gandon", 
        "givenName": "Fabien", 
        "type": "Person"
      }, 
      {
        "familyName": "d\u2019Aquin", 
        "givenName": "Mathieu", 
        "type": "Person"
      }, 
      {
        "familyName": "Staab", 
        "givenName": "Steffen", 
        "type": "Person"
      }, 
      {
        "familyName": "Tordai", 
        "givenName": "Anna", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-07443-6_61", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-07442-9", 
        "978-3-319-07443-6"
      ], 
      "name": "The Semantic Web: Trends and Challenges", 
      "type": "Book"
    }, 
    "keywords": [
      "Semantic Web research community", 
      "web services", 
      "research community", 
      "web service interface", 
      "autonomous service providers", 
      "service interfaces", 
      "business analytics", 
      "declarative approach", 
      "enterprise data", 
      "data warehouse", 
      "manual effort", 
      "description language", 
      "optimization heuristics", 
      "service providers", 
      "semantic challenges", 
      "large-scale integration", 
      "mediation approach", 
      "services", 
      "scale integration", 
      "hRESTS", 
      "WSDL", 
      "SAWSDL", 
      "WADL", 
      "analytics", 
      "scalability", 
      "requirements", 
      "warehouse", 
      "enterprises", 
      "key characteristics", 
      "heuristics", 
      "integration", 
      "ETL", 
      "language", 
      "usage", 
      "adaptability", 
      "providers", 
      "interface", 
      "challenges", 
      "current gaps", 
      "goal", 
      "community", 
      "work", 
      "industry", 
      "situation", 
      "standards", 
      "data", 
      "order", 
      "efforts", 
      "gap", 
      "account", 
      "characteristics", 
      "size", 
      "role", 
      "Dawes", 
      "dependence", 
      "approach", 
      "fed"
    ], 
    "name": "Towards a Data Warehouse Fed with Web Services", 
    "pagination": "874-884", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015832704"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-07443-6_61"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-07443-6_61", 
      "https://app.dimensions.ai/details/publication/pub.1015832704"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_433.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-07443-6_61"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07443-6_61'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07443-6_61'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07443-6_61'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07443-6_61'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      22 PREDICATES      82 URIs      75 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-07443-6_61 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N1371432d2de74a898d5137a41c12e91b
4 schema:datePublished 2014
5 schema:datePublishedReg 2014-01-01
6 schema:description The role of data warehouse for business analytics cannot be undermined for any enterprise, irrespective of its size. But the growing dependence on web services has resulted in a situation where the enterprise data is managed by multiple, autonomous service providers. The goal of our work is to investigate and devise an approach to address the trade-off between scalability and adaptability in large scale integration with numerous ever-evolving web services. We present our prototype DaWeS (Data warehouse fed with Web Services) and explore how ETL using the mediation approach benefits this trade-off for enterprises with complex data warehousing requirements. The semantic web research community has proposed various standards like WSDL, WADL, hRESTS, SAWSDL for describing web service interface (API) the usage of which could have solved our requirement of automated integration. DaWeS looks to fill the current gap between the industry and research community by taking into account the key characteristics of the aforementioned description languages and using a declarative approach in order to reduce the manual effort. We also present to the semantic web research community the optimization heuristics (to reduce the API operation calls) and semantic challenges (auto-adaptability especially in the wake of an API change) devised while building DaWeS.
7 schema:editor N2e6b1ed82e98423ba9f0360ece1f1e9e
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N4dbb496587644699a7ead2800d2944df
11 schema:keywords Dawes
12 ETL
13 SAWSDL
14 Semantic Web research community
15 WADL
16 WSDL
17 account
18 adaptability
19 analytics
20 approach
21 autonomous service providers
22 business analytics
23 challenges
24 characteristics
25 community
26 current gaps
27 data
28 data warehouse
29 declarative approach
30 dependence
31 description language
32 efforts
33 enterprise data
34 enterprises
35 fed
36 gap
37 goal
38 hRESTS
39 heuristics
40 industry
41 integration
42 interface
43 key characteristics
44 language
45 large-scale integration
46 manual effort
47 mediation approach
48 optimization heuristics
49 order
50 providers
51 requirements
52 research community
53 role
54 scalability
55 scale integration
56 semantic challenges
57 service interfaces
58 service providers
59 services
60 situation
61 size
62 standards
63 usage
64 warehouse
65 web service interface
66 web services
67 work
68 schema:name Towards a Data Warehouse Fed with Web Services
69 schema:pagination 874-884
70 schema:productId N1d0937099d0748bdad184dc44d637748
71 N429bc528e8014230a8e32d98cbb87779
72 schema:publisher N3337e7194730463bafa8c7ad0aa26d0a
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015832704
74 https://doi.org/10.1007/978-3-319-07443-6_61
75 schema:sdDatePublished 2022-12-01T06:54
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher Nf0a590d369104ac8a6da258d964ad9a5
78 schema:url https://doi.org/10.1007/978-3-319-07443-6_61
79 sgo:license sg:explorer/license/
80 sgo:sdDataset chapters
81 rdf:type schema:Chapter
82 N068c95a3acd241ddb25079589fda73bd schema:familyName Tordai
83 schema:givenName Anna
84 rdf:type schema:Person
85 N1371432d2de74a898d5137a41c12e91b rdf:first sg:person.011221430511.77
86 rdf:rest rdf:nil
87 N1d0937099d0748bdad184dc44d637748 schema:name dimensions_id
88 schema:value pub.1015832704
89 rdf:type schema:PropertyValue
90 N2e6b1ed82e98423ba9f0360ece1f1e9e rdf:first N489c6efeb70949969833992940add52e
91 rdf:rest N73961196dd3042d5ab83d57db9822191
92 N3337e7194730463bafa8c7ad0aa26d0a schema:name Springer Nature
93 rdf:type schema:Organisation
94 N429bc528e8014230a8e32d98cbb87779 schema:name doi
95 schema:value 10.1007/978-3-319-07443-6_61
96 rdf:type schema:PropertyValue
97 N489c6efeb70949969833992940add52e schema:familyName Presutti
98 schema:givenName Valentina
99 rdf:type schema:Person
100 N4c57255e4d374827a918e411ee1a901c rdf:first N7efd3b54c790428fb96d8f8194d7d405
101 rdf:rest Nc4b4d2c6b16348f3ab6ba403ccd1dc8d
102 N4dbb496587644699a7ead2800d2944df schema:isbn 978-3-319-07442-9
103 978-3-319-07443-6
104 schema:name The Semantic Web: Trends and Challenges
105 rdf:type schema:Book
106 N73961196dd3042d5ab83d57db9822191 rdf:first Nbd6528e41c7042ed8442204bab43ae3e
107 rdf:rest Nd08ef3a36dcb414fac351a99031ac6bf
108 N7d0c522fa1b04a2592ca1de4993b2cdf rdf:first Ndd57ef92f8ab434ab6f800e1c86569ca
109 rdf:rest N4c57255e4d374827a918e411ee1a901c
110 N7efd3b54c790428fb96d8f8194d7d405 schema:familyName Staab
111 schema:givenName Steffen
112 rdf:type schema:Person
113 Nbd6528e41c7042ed8442204bab43ae3e schema:familyName d’Amato
114 schema:givenName Claudia
115 rdf:type schema:Person
116 Nc4b4d2c6b16348f3ab6ba403ccd1dc8d rdf:first N068c95a3acd241ddb25079589fda73bd
117 rdf:rest rdf:nil
118 Nd08ef3a36dcb414fac351a99031ac6bf rdf:first Nf846a831c62b4bacbd56c40cb9d9e5f1
119 rdf:rest N7d0c522fa1b04a2592ca1de4993b2cdf
120 Ndd57ef92f8ab434ab6f800e1c86569ca schema:familyName d’Aquin
121 schema:givenName Mathieu
122 rdf:type schema:Person
123 Nf0a590d369104ac8a6da258d964ad9a5 schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 Nf846a831c62b4bacbd56c40cb9d9e5f1 schema:familyName Gandon
126 schema:givenName Fabien
127 rdf:type schema:Person
128 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
129 schema:name Information and Computing Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
132 schema:name Information Systems
133 rdf:type schema:DefinedTerm
134 sg:person.011221430511.77 schema:affiliation grid-institutes:grid.503317.3
135 schema:familyName Samuel
136 schema:givenName John
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011221430511.77
138 rdf:type schema:Person
139 grid-institutes:grid.503317.3 schema:alternateName LIMOS, CNRS, Blaise Pascal University, Aubière, France
140 schema:name LIMOS, CNRS, Blaise Pascal University, Aubière, France
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...