Computer Aided Detection of Spinal Degenerative Osteophytes on Sodium Fluoride PET/CT View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Jianhua Yao , Hector Munoz , Joseph E. Burns , Le Lu , Ronald M. Summers

ABSTRACT

Osteophytes, a common degenerative change in the spine, are found in 90 % of the population over 60 years of age. We have developed an automated system to detect and assess spinal osteophytes on \(^{18}\)F-sodium fluoride (\(^{18}\)F-NaF) PET/CT studies. We first segment the cortical shell of the vertebral body and unwrap it to a 2D map. Multiple characteristic features derived from PET/CT images are then projected onto the map. Finally, we adopt a three-tier learning based scheme to compute a confidence map and detect osteophyte sites and clusters. The system was tested on 20 studies (10 training and 10 testing) and achieved 84 % sensitivity at 3.8 false positives per case for the training set, and 82 % sensitivity at a 4.7 false positive rate for the testing set. More... »

PAGES

51-60

References to SciGraph publications

  • 2012. Detection of Vertebral Body Fractures Based on Cortical Shell Unwrapping in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2012
  • 2010-05. Computer-aided diagnosis of lumbar disc pathology from clinical lower spine MRI in INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY
  • Book

    TITLE

    Computational Methods and Clinical Applications for Spine Imaging

    ISBN

    978-3-319-07268-5
    978-3-319-07269-2

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-07269-2_5

    DOI

    http://dx.doi.org/10.1007/978-3-319-07269-2_5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1026680569


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "Radiology and Imaging Sciences Department, Clinical Center National Institutes of Health, Bethesda, MD\u00a020892, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yao", 
            "givenName": "Jianhua", 
            "id": "sg:person.012366760067.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "Radiology and Imaging Sciences Department, Clinical Center National Institutes of Health, Bethesda, MD\u00a020892, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Munoz", 
            "givenName": "Hector", 
            "id": "sg:person.01074602356.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074602356.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiological Sciences, University of California, Irvine School of Medicine, Orange, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Burns", 
            "givenName": "Joseph E.", 
            "id": "sg:person.01143237134.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143237134.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "Radiology and Imaging Sciences Department, Clinical Center National Institutes of Health, Bethesda, MD\u00a020892, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Le", 
            "id": "sg:person.01353423536.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "Radiology and Imaging Sciences Department, Clinical Center National Institutes of Health, Bethesda, MD\u00a020892, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Summers", 
            "givenName": "Ronald M.", 
            "id": "sg:person.011331054577.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.compmedimag.2007.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009086888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-33454-2_63", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031708973", 
              "https://doi.org/10.1007/978-3-642-33454-2_63"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11548-009-0396-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050283232", 
              "https://doi.org/10.1007/s11548-009-0396-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11548-009-0396-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050283232", 
              "https://doi.org/10.1007/s11548-009-0396-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/01.brs.0000135836.43459.40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051697161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/01.brs.0000135836.43459.40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051697161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/57/24/8357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059029561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2008.920612", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061695256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2008.75", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743671"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2106/00004623-196244020-00003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068883338"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014", 
        "datePublishedReg": "2014-01-01", 
        "description": "Osteophytes, a common degenerative change in the spine, are found in 90\u00a0% of the population over 60 years of age. We have developed an automated system to detect and assess spinal osteophytes on \\(^{18}\\)F-sodium fluoride (\\(^{18}\\)F-NaF) PET/CT studies. We first segment the cortical shell of the vertebral body and unwrap it to a 2D map. Multiple characteristic features derived from PET/CT images are then projected onto the map. Finally, we adopt a three-tier learning based scheme to compute a confidence map and detect osteophyte sites and clusters. The system was tested on 20 studies (10 training and 10 testing) and achieved 84\u00a0% sensitivity at 3.8 false positives per case for the training set, and 82\u00a0% sensitivity at a 4.7 false positive rate for the testing set.", 
        "editor": [
          {
            "familyName": "Yao", 
            "givenName": "Jianhua", 
            "type": "Person"
          }, 
          {
            "familyName": "Klinder", 
            "givenName": "Tobias", 
            "type": "Person"
          }, 
          {
            "familyName": "Li", 
            "givenName": "Shuo", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-07269-2_5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-07268-5", 
            "978-3-319-07269-2"
          ], 
          "name": "Computational Methods and Clinical Applications for Spine Imaging", 
          "type": "Book"
        }, 
        "name": "Computer Aided Detection of Spinal Degenerative Osteophytes on Sodium Fluoride PET/CT", 
        "pagination": "51-60", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-07269-2_5"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7f1a6ea19214c31d8da9c58109f57bdd669925cc4906ebe733afbfc2980a1b16"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1026680569"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-07269-2_5", 
          "https://app.dimensions.ai/details/publication/pub.1026680569"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T21:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000259.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-07269-2_5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07269-2_5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07269-2_5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07269-2_5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07269-2_5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    131 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-07269-2_5 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 schema:author N5bdb30cafc754170ad0548e78efa26d4
    4 schema:citation sg:pub.10.1007/978-3-642-33454-2_63
    5 sg:pub.10.1007/s11548-009-0396-9
    6 https://doi.org/10.1016/j.compmedimag.2007.09.002
    7 https://doi.org/10.1088/0031-9155/57/24/8357
    8 https://doi.org/10.1097/01.brs.0000135836.43459.40
    9 https://doi.org/10.1109/tmi.2008.920612
    10 https://doi.org/10.1109/tpami.2008.75
    11 https://doi.org/10.2106/00004623-196244020-00003
    12 schema:datePublished 2014
    13 schema:datePublishedReg 2014-01-01
    14 schema:description Osteophytes, a common degenerative change in the spine, are found in 90 % of the population over 60 years of age. We have developed an automated system to detect and assess spinal osteophytes on \(^{18}\)F-sodium fluoride (\(^{18}\)F-NaF) PET/CT studies. We first segment the cortical shell of the vertebral body and unwrap it to a 2D map. Multiple characteristic features derived from PET/CT images are then projected onto the map. Finally, we adopt a three-tier learning based scheme to compute a confidence map and detect osteophyte sites and clusters. The system was tested on 20 studies (10 training and 10 testing) and achieved 84 % sensitivity at 3.8 false positives per case for the training set, and 82 % sensitivity at a 4.7 false positive rate for the testing set.
    15 schema:editor Ncd84a1a97d6148b7ad32efb738053184
    16 schema:genre chapter
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N9894a54f71674f6e9fb82455e96e8d21
    20 schema:name Computer Aided Detection of Spinal Degenerative Osteophytes on Sodium Fluoride PET/CT
    21 schema:pagination 51-60
    22 schema:productId N052745d82064488c99166610649c7863
    23 N5a97f31c1797468a9e6caa1b111a1e8a
    24 N9b3e226015d64346859c58925061fb00
    25 schema:publisher Nd80f0cbac9fe4c7b839f026902340898
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026680569
    27 https://doi.org/10.1007/978-3-319-07269-2_5
    28 schema:sdDatePublished 2019-04-15T21:02
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher Na27ee8745bd04dd589d80c524f6d9ce7
    31 schema:url http://link.springer.com/10.1007/978-3-319-07269-2_5
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset chapters
    34 rdf:type schema:Chapter
    35 N052745d82064488c99166610649c7863 schema:name readcube_id
    36 schema:value 7f1a6ea19214c31d8da9c58109f57bdd669925cc4906ebe733afbfc2980a1b16
    37 rdf:type schema:PropertyValue
    38 N152412aa74164a3498aea6cfc71259be rdf:first sg:person.01074602356.30
    39 rdf:rest Nd98f6ea0d3e441b2b0a2d4e43fe8d41e
    40 N1996c2e478254707ac4c7b6794a6b7f7 rdf:first N71a458b6cc524eeabd7bbb465fafc41e
    41 rdf:rest rdf:nil
    42 N22de3d394b4d4059ba1cee3b4d8055f4 rdf:first sg:person.011331054577.30
    43 rdf:rest rdf:nil
    44 N461529c6194f4fcfb88d2d8f62722731 rdf:first sg:person.01353423536.73
    45 rdf:rest N22de3d394b4d4059ba1cee3b4d8055f4
    46 N4bfde914bcfd4527bcc9f464beed1a65 schema:familyName Yao
    47 schema:givenName Jianhua
    48 rdf:type schema:Person
    49 N5a97f31c1797468a9e6caa1b111a1e8a schema:name doi
    50 schema:value 10.1007/978-3-319-07269-2_5
    51 rdf:type schema:PropertyValue
    52 N5bdb30cafc754170ad0548e78efa26d4 rdf:first sg:person.012366760067.46
    53 rdf:rest N152412aa74164a3498aea6cfc71259be
    54 N71a458b6cc524eeabd7bbb465fafc41e schema:familyName Li
    55 schema:givenName Shuo
    56 rdf:type schema:Person
    57 N9894a54f71674f6e9fb82455e96e8d21 schema:isbn 978-3-319-07268-5
    58 978-3-319-07269-2
    59 schema:name Computational Methods and Clinical Applications for Spine Imaging
    60 rdf:type schema:Book
    61 N9b13454d5d5b40f7be80f8dd51f195a0 schema:familyName Klinder
    62 schema:givenName Tobias
    63 rdf:type schema:Person
    64 N9b3e226015d64346859c58925061fb00 schema:name dimensions_id
    65 schema:value pub.1026680569
    66 rdf:type schema:PropertyValue
    67 Na27ee8745bd04dd589d80c524f6d9ce7 schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 Nacf36f5c9cb444dcab61a20ba52e9df6 schema:name Department of Radiological Sciences, University of California, Irvine School of Medicine, Orange, CA, USA
    70 rdf:type schema:Organization
    71 Ncd84a1a97d6148b7ad32efb738053184 rdf:first N4bfde914bcfd4527bcc9f464beed1a65
    72 rdf:rest Ne5e9206572e34d589fcc09619350432d
    73 Nd80f0cbac9fe4c7b839f026902340898 schema:location Cham
    74 schema:name Springer International Publishing
    75 rdf:type schema:Organisation
    76 Nd98f6ea0d3e441b2b0a2d4e43fe8d41e rdf:first sg:person.01143237134.25
    77 rdf:rest N461529c6194f4fcfb88d2d8f62722731
    78 Ne5e9206572e34d589fcc09619350432d rdf:first N9b13454d5d5b40f7be80f8dd51f195a0
    79 rdf:rest N1996c2e478254707ac4c7b6794a6b7f7
    80 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Medical and Health Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Clinical Sciences
    85 rdf:type schema:DefinedTerm
    86 sg:person.01074602356.30 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    87 schema:familyName Munoz
    88 schema:givenName Hector
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074602356.30
    90 rdf:type schema:Person
    91 sg:person.011331054577.30 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    92 schema:familyName Summers
    93 schema:givenName Ronald M.
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30
    95 rdf:type schema:Person
    96 sg:person.01143237134.25 schema:affiliation Nacf36f5c9cb444dcab61a20ba52e9df6
    97 schema:familyName Burns
    98 schema:givenName Joseph E.
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143237134.25
    100 rdf:type schema:Person
    101 sg:person.012366760067.46 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    102 schema:familyName Yao
    103 schema:givenName Jianhua
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46
    105 rdf:type schema:Person
    106 sg:person.01353423536.73 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    107 schema:familyName Lu
    108 schema:givenName Le
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73
    110 rdf:type schema:Person
    111 sg:pub.10.1007/978-3-642-33454-2_63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031708973
    112 https://doi.org/10.1007/978-3-642-33454-2_63
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/s11548-009-0396-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050283232
    115 https://doi.org/10.1007/s11548-009-0396-9
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/j.compmedimag.2007.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009086888
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1088/0031-9155/57/24/8357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059029561
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1097/01.brs.0000135836.43459.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051697161
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1109/tmi.2008.920612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695256
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1109/tpami.2008.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743671
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.2106/00004623-196244020-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068883338
    128 rdf:type schema:CreativeWork
    129 https://www.grid.ac/institutes/grid.410305.3 schema:alternateName National Institutes of Health Clinical Center
    130 schema:name Radiology and Imaging Sciences Department, Clinical Center National Institutes of Health, Bethesda, MD 20892, USA
    131 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...