Automatic and Reliable Segmentation of Spinal Canals in Low-Resolution, Low-Contrast CT Images View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014-07-12

AUTHORS

Qian Wang , Le Lu , Dijia Wu , Noha El-Zehiry , Dinggang Shen , Kevin S. Zhou

ABSTRACT

Accurate segmentation of spinal canals in Computed Tomography (CT) images is an important task in many related studies. In this paper, we propose an automatic segmentation method and apply it to our highly challenging 110 datasets from the CT channel of PET-CT scans. We adapt the interactive random-walks (RW) segmentation algorithm to be fully automatic which is initialized with robust voxelwise classification using Haar features and probabilistic boosting tree. One-shot RW is able to estimate yet imperfect segmentation. We then refine the topology of the segmented spinal canal leading to improved seeds or boundary conditions of RW. Therefore, by iteratively optimizing the spinal canal topology and running RW segmentation, satisfactory segmentation results can be acquired within only a few iterations. Our experiments validate the capability of the proposed method with promising segmentation performance, even though the resolution and the contrast of our datasets are low. More... »

PAGES

15-24

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-07269-2_2

DOI

http://dx.doi.org/10.1007/978-3-319-07269-2_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016169818


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA", 
          "id": "http://www.grid.ac/institutes/grid.10698.36", 
          "name": [
            "Department of Computer Science, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA", 
            "Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Qian", 
        "id": "sg:person.01271664354.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271664354.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Radiology and Imaging Science, National Institutes of Health (NIH) Clinical Center, Bethesda, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Radiology and Imaging Science, National Institutes of Health (NIH) Clinical Center, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Le", 
        "id": "sg:person.01353423536.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Dijia", 
        "id": "sg:person.07434513236.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07434513236.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "El-Zehiry", 
        "givenName": "Noha", 
        "id": "sg:person.07657676251.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657676251.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA", 
          "id": "http://www.grid.ac/institutes/grid.10698.36", 
          "name": [
            "Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Dinggang", 
        "id": "sg:person.0747414465.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747414465.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Kevin S.", 
        "id": "sg:person.0720775562.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720775562.46"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014-07-12", 
    "datePublishedReg": "2014-07-12", 
    "description": "Accurate segmentation of spinal canals in Computed Tomography (CT) images is an important task in many related studies. In this paper, we propose an automatic segmentation method and apply it to our highly challenging 110 datasets from the CT channel of PET-CT scans. We adapt the interactive random-walks (RW) segmentation algorithm to be fully automatic which is initialized with robust voxelwise classification using Haar features and probabilistic boosting tree. One-shot RW is able to estimate yet imperfect segmentation. We then refine the topology of the segmented spinal canal leading to improved seeds or boundary conditions of RW. Therefore, by iteratively optimizing the spinal canal topology and running RW segmentation, satisfactory segmentation results can be acquired within only a few iterations. Our experiments validate the capability of the proposed method with promising segmentation performance, even though the resolution and the contrast of our datasets are low.", 
    "editor": [
      {
        "familyName": "Yao", 
        "givenName": "Jianhua", 
        "type": "Person"
      }, 
      {
        "familyName": "Klinder", 
        "givenName": "Tobias", 
        "type": "Person"
      }, 
      {
        "familyName": "Li", 
        "givenName": "Shuo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-07269-2_2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-07268-5", 
        "978-3-319-07269-2"
      ], 
      "name": "Computational Methods and Clinical Applications for Spine Imaging", 
      "type": "Book"
    }, 
    "keywords": [
      "low-contrast CT images", 
      "probabilistic boosting tree", 
      "random walks segmentation algorithm", 
      "satisfactory segmentation results", 
      "automatic segmentation method", 
      "promising segmentation performance", 
      "Haar features", 
      "boosting trees", 
      "segmentation performance", 
      "accurate segmentation", 
      "voxelwise classification", 
      "segmentation algorithm", 
      "segmentation results", 
      "reliable segmentation", 
      "segmentation method", 
      "segmentation", 
      "important task", 
      "imperfect segmentation", 
      "computed tomography images", 
      "low resolution", 
      "dataset", 
      "CT images", 
      "images", 
      "CT channels", 
      "topology", 
      "tomography images", 
      "algorithm", 
      "task", 
      "classification", 
      "iteration", 
      "related studies", 
      "capability", 
      "performance", 
      "method", 
      "trees", 
      "features", 
      "experiments", 
      "channels", 
      "results", 
      "resolution", 
      "scans", 
      "PET-CT scan", 
      "conditions", 
      "study", 
      "RW", 
      "contrast", 
      "boundary conditions", 
      "improved seed", 
      "seeds", 
      "spinal canal", 
      "canal", 
      "paper", 
      "interactive random-walks (RW) segmentation algorithm", 
      "robust voxelwise classification", 
      "One-shot RW", 
      "segmented spinal canal", 
      "spinal canal topology", 
      "canal topology", 
      "RW segmentation"
    ], 
    "name": "Automatic and Reliable Segmentation of Spinal Canals in Low-Resolution, Low-Contrast CT Images", 
    "pagination": "15-24", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016169818"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-07269-2_2"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-07269-2_2", 
      "https://app.dimensions.ai/details/publication/pub.1016169818"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_413.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-07269-2_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07269-2_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07269-2_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07269-2_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07269-2_2'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      23 PREDICATES      84 URIs      77 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-07269-2_2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4b371d36263341bb82dd0766fb571e96
4 schema:datePublished 2014-07-12
5 schema:datePublishedReg 2014-07-12
6 schema:description Accurate segmentation of spinal canals in Computed Tomography (CT) images is an important task in many related studies. In this paper, we propose an automatic segmentation method and apply it to our highly challenging 110 datasets from the CT channel of PET-CT scans. We adapt the interactive random-walks (RW) segmentation algorithm to be fully automatic which is initialized with robust voxelwise classification using Haar features and probabilistic boosting tree. One-shot RW is able to estimate yet imperfect segmentation. We then refine the topology of the segmented spinal canal leading to improved seeds or boundary conditions of RW. Therefore, by iteratively optimizing the spinal canal topology and running RW segmentation, satisfactory segmentation results can be acquired within only a few iterations. Our experiments validate the capability of the proposed method with promising segmentation performance, even though the resolution and the contrast of our datasets are low.
7 schema:editor N55a20c01752d46c88a056b21f47031f9
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ne500eac3de374ac89e0f87a6f30076ce
12 schema:keywords CT channels
13 CT images
14 Haar features
15 One-shot RW
16 PET-CT scan
17 RW
18 RW segmentation
19 accurate segmentation
20 algorithm
21 automatic segmentation method
22 boosting trees
23 boundary conditions
24 canal
25 canal topology
26 capability
27 channels
28 classification
29 computed tomography images
30 conditions
31 contrast
32 dataset
33 experiments
34 features
35 images
36 imperfect segmentation
37 important task
38 improved seed
39 interactive random-walks (RW) segmentation algorithm
40 iteration
41 low resolution
42 low-contrast CT images
43 method
44 paper
45 performance
46 probabilistic boosting tree
47 promising segmentation performance
48 random walks segmentation algorithm
49 related studies
50 reliable segmentation
51 resolution
52 results
53 robust voxelwise classification
54 satisfactory segmentation results
55 scans
56 seeds
57 segmentation
58 segmentation algorithm
59 segmentation method
60 segmentation performance
61 segmentation results
62 segmented spinal canal
63 spinal canal
64 spinal canal topology
65 study
66 task
67 tomography images
68 topology
69 trees
70 voxelwise classification
71 schema:name Automatic and Reliable Segmentation of Spinal Canals in Low-Resolution, Low-Contrast CT Images
72 schema:pagination 15-24
73 schema:productId N5a7d1cd942e240318c48530fa3822bef
74 Ne0c5a3af564a4b379e5ea70884acbc0f
75 schema:publisher Nbecab4d18b5e4101b18d8bdf3836c660
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016169818
77 https://doi.org/10.1007/978-3-319-07269-2_2
78 schema:sdDatePublished 2022-01-01T19:24
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N711953b2a18845f58f91ae815e753595
81 schema:url https://doi.org/10.1007/978-3-319-07269-2_2
82 sgo:license sg:explorer/license/
83 sgo:sdDataset chapters
84 rdf:type schema:Chapter
85 N00da8a7c685741caa915448a17385e45 rdf:first sg:person.0720775562.46
86 rdf:rest rdf:nil
87 N03ab085d2541458bb5ba7fa09d4b249c schema:familyName Li
88 schema:givenName Shuo
89 rdf:type schema:Person
90 N29a32f9f44774be4b53e3afee96a499a rdf:first sg:person.07434513236.29
91 rdf:rest Nb217ad0f255b4f8b937b2f852d103555
92 N2fa27d94b2fe4b5dac0f37ead2c9d3b6 schema:familyName Yao
93 schema:givenName Jianhua
94 rdf:type schema:Person
95 N4454c159ef18486298a547b816b3b1cf rdf:first sg:person.0747414465.74
96 rdf:rest N00da8a7c685741caa915448a17385e45
97 N4b371d36263341bb82dd0766fb571e96 rdf:first sg:person.01271664354.61
98 rdf:rest Nf58f4ac122244e3983ae4f8d9e5dd9bd
99 N55a20c01752d46c88a056b21f47031f9 rdf:first N2fa27d94b2fe4b5dac0f37ead2c9d3b6
100 rdf:rest N96fa4062049247dbb33fbebb9d531d31
101 N5a7d1cd942e240318c48530fa3822bef schema:name dimensions_id
102 schema:value pub.1016169818
103 rdf:type schema:PropertyValue
104 N6aa86175e5ad4aa483d77337d4059d23 rdf:first N03ab085d2541458bb5ba7fa09d4b249c
105 rdf:rest rdf:nil
106 N711953b2a18845f58f91ae815e753595 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 N96fa4062049247dbb33fbebb9d531d31 rdf:first Nc3be6fd266fc46e0bf044dfc691f1c8d
109 rdf:rest N6aa86175e5ad4aa483d77337d4059d23
110 Nb217ad0f255b4f8b937b2f852d103555 rdf:first sg:person.07657676251.51
111 rdf:rest N4454c159ef18486298a547b816b3b1cf
112 Nbecab4d18b5e4101b18d8bdf3836c660 schema:name Springer Nature
113 rdf:type schema:Organisation
114 Nc3be6fd266fc46e0bf044dfc691f1c8d schema:familyName Klinder
115 schema:givenName Tobias
116 rdf:type schema:Person
117 Ne0c5a3af564a4b379e5ea70884acbc0f schema:name doi
118 schema:value 10.1007/978-3-319-07269-2_2
119 rdf:type schema:PropertyValue
120 Ne500eac3de374ac89e0f87a6f30076ce schema:isbn 978-3-319-07268-5
121 978-3-319-07269-2
122 schema:name Computational Methods and Clinical Applications for Spine Imaging
123 rdf:type schema:Book
124 Nf58f4ac122244e3983ae4f8d9e5dd9bd rdf:first sg:person.01353423536.73
125 rdf:rest N29a32f9f44774be4b53e3afee96a499a
126 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
127 schema:name Information and Computing Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
130 schema:name Artificial Intelligence and Image Processing
131 rdf:type schema:DefinedTerm
132 sg:person.01271664354.61 schema:affiliation grid-institutes:grid.10698.36
133 schema:familyName Wang
134 schema:givenName Qian
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271664354.61
136 rdf:type schema:Person
137 sg:person.01353423536.73 schema:affiliation grid-institutes:grid.410305.3
138 schema:familyName Lu
139 schema:givenName Le
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73
141 rdf:type schema:Person
142 sg:person.0720775562.46 schema:affiliation grid-institutes:grid.419233.e
143 schema:familyName Zhou
144 schema:givenName Kevin S.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720775562.46
146 rdf:type schema:Person
147 sg:person.07434513236.29 schema:affiliation grid-institutes:grid.419233.e
148 schema:familyName Wu
149 schema:givenName Dijia
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07434513236.29
151 rdf:type schema:Person
152 sg:person.0747414465.74 schema:affiliation grid-institutes:grid.10698.36
153 schema:familyName Shen
154 schema:givenName Dinggang
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747414465.74
156 rdf:type schema:Person
157 sg:person.07657676251.51 schema:affiliation grid-institutes:grid.419233.e
158 schema:familyName El-Zehiry
159 schema:givenName Noha
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657676251.51
161 rdf:type schema:Person
162 grid-institutes:grid.10698.36 schema:alternateName Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
163 schema:name Department of Computer Science, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
164 Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
165 rdf:type schema:Organization
166 grid-institutes:grid.410305.3 schema:alternateName Radiology and Imaging Science, National Institutes of Health (NIH) Clinical Center, Bethesda, MD, USA
167 schema:name Radiology and Imaging Science, National Institutes of Health (NIH) Clinical Center, Bethesda, MD, USA
168 rdf:type schema:Organization
169 grid-institutes:grid.419233.e schema:alternateName Siemens Corporate Research, Princeton, NJ, USA
170 schema:name Siemens Corporate Research, Princeton, NJ, USA
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...