Quantitative Monitoring of Syndesmophyte Growth in Ankylosing Spondylitis Using Computed Tomography View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Sovira Tan , Jianhua Yao , Lawrence Yao , Michael M. Ward

ABSTRACT

Ankylosing Spondylitis, an inflammatory disease affecting mainly the spine, can be characterized by abnormal bone formation (syndesmophytes) along the margins of the intervertebral disk. Monitoring syndesmophytes evolution is challenging because of their slow growth rate, a problem compounded by the use of radiography and qualitative rating systems. To improve sensitivity to change, we designed a computer algorithm that fully quantifies syndesmophyte volume using the 3D imaging capabilities of computed tomography. The reliability of the algorithm was assessed by comparing the results obtained from 2 scans performed on the same day in 9 patients. A longitudinal study on 20 patients suggests that the method will benefit longitudinal clinical studies of syndesmophyte development and growth. After one year, the 3D algorithm showed an increase in syndesmophyte volume in 75 % of patients, while radiography showed an increase in only 15 % of patients. More... »

PAGES

135-142

References to SciGraph publications

  • 1997-02. Geodesic Active Contours in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • Book

    TITLE

    Computational Methods and Clinical Applications for Spine Imaging

    ISBN

    978-3-319-07268-5
    978-3-319-07269-2

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-07269-2_12

    DOI

    http://dx.doi.org/10.1007/978-3-319-07269-2_12

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037447236


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Institute of Arthritis and Musculoskeletal and Skin Diseases", 
              "id": "https://www.grid.ac/institutes/grid.420086.8", 
              "name": [
                "National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD\u00a020892, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tan", 
            "givenName": "Sovira", 
            "id": "sg:person.01245047724.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245047724.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD\u00a020892, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yao", 
            "givenName": "Jianhua", 
            "id": "sg:person.012366760067.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD\u00a020892, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yao", 
            "givenName": "Lawrence", 
            "id": "sg:person.0733025633.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733025633.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Arthritis and Musculoskeletal and Skin Diseases", 
              "id": "https://www.grid.ac/institutes/grid.420086.8", 
              "name": [
                "National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD\u00a020892, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ward", 
            "givenName": "Michael M.", 
            "id": "sg:person.011273675607.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011273675607.63"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/art.27231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012609586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/art.27231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012609586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/art.23901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018324488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1007979827043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020899731", 
              "https://doi.org/10.1023/a:1007979827043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/ard.2004.020503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025135231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-6736(07)60635-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027303542"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/art.24888", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033554990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/art.24888", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033554990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.769472", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035250551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/annrheumdis-2012-202661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040640385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2006.05.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051425171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/57/14/4683", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059029305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2008.920612", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061695256"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014", 
        "datePublishedReg": "2014-01-01", 
        "description": "Ankylosing Spondylitis, an inflammatory disease affecting mainly the spine, can be characterized by abnormal bone formation (syndesmophytes) along the margins of the intervertebral disk. Monitoring syndesmophytes evolution is challenging because of their slow growth rate, a problem compounded by the use of radiography and qualitative rating systems. To improve sensitivity to change, we designed a computer algorithm that fully quantifies syndesmophyte volume using the 3D imaging capabilities of computed tomography. The reliability of the algorithm was assessed by comparing the results obtained from 2 scans performed on the same day in 9 patients. A longitudinal study on 20 patients suggests that the method will benefit longitudinal clinical studies of syndesmophyte development and growth. After one year, the 3D algorithm showed an increase in syndesmophyte volume in 75\u00a0% of patients, while radiography showed an increase in only 15\u00a0% of patients.", 
        "editor": [
          {
            "familyName": "Yao", 
            "givenName": "Jianhua", 
            "type": "Person"
          }, 
          {
            "familyName": "Klinder", 
            "givenName": "Tobias", 
            "type": "Person"
          }, 
          {
            "familyName": "Li", 
            "givenName": "Shuo", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-07269-2_12", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-07268-5", 
            "978-3-319-07269-2"
          ], 
          "name": "Computational Methods and Clinical Applications for Spine Imaging", 
          "type": "Book"
        }, 
        "name": "Quantitative Monitoring of Syndesmophyte Growth in Ankylosing Spondylitis Using Computed Tomography", 
        "pagination": "135-142", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-07269-2_12"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b261ed6b01d0e33d5631bbbeccefcf99d454d66c5954c0609e45b0db71406bc7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037447236"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-07269-2_12", 
          "https://app.dimensions.ai/details/publication/pub.1037447236"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T23:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000266.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-07269-2_12"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07269-2_12'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07269-2_12'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07269-2_12'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07269-2_12'


     

    This table displays all metadata directly associated to this object as RDF triples.

    133 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-07269-2_12 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 schema:author N5a0dcac71c674477925fd7d4a156884a
    4 schema:citation sg:pub.10.1023/a:1007979827043
    5 https://doi.org/10.1002/art.23901
    6 https://doi.org/10.1002/art.24888
    7 https://doi.org/10.1002/art.27231
    8 https://doi.org/10.1016/j.media.2006.05.005
    9 https://doi.org/10.1016/s0140-6736(07)60635-7
    10 https://doi.org/10.1088/0031-9155/57/14/4683
    11 https://doi.org/10.1109/tmi.2008.920612
    12 https://doi.org/10.1117/12.769472
    13 https://doi.org/10.1136/annrheumdis-2012-202661
    14 https://doi.org/10.1136/ard.2004.020503
    15 schema:datePublished 2014
    16 schema:datePublishedReg 2014-01-01
    17 schema:description Ankylosing Spondylitis, an inflammatory disease affecting mainly the spine, can be characterized by abnormal bone formation (syndesmophytes) along the margins of the intervertebral disk. Monitoring syndesmophytes evolution is challenging because of their slow growth rate, a problem compounded by the use of radiography and qualitative rating systems. To improve sensitivity to change, we designed a computer algorithm that fully quantifies syndesmophyte volume using the 3D imaging capabilities of computed tomography. The reliability of the algorithm was assessed by comparing the results obtained from 2 scans performed on the same day in 9 patients. A longitudinal study on 20 patients suggests that the method will benefit longitudinal clinical studies of syndesmophyte development and growth. After one year, the 3D algorithm showed an increase in syndesmophyte volume in 75 % of patients, while radiography showed an increase in only 15 % of patients.
    18 schema:editor N5ab582d4030243f0a9c7ee3bbac67613
    19 schema:genre chapter
    20 schema:inLanguage en
    21 schema:isAccessibleForFree false
    22 schema:isPartOf N2f1c536481384dd0ab2d05fd492a2091
    23 schema:name Quantitative Monitoring of Syndesmophyte Growth in Ankylosing Spondylitis Using Computed Tomography
    24 schema:pagination 135-142
    25 schema:productId N03e8d329e836467bb5a3e6a1ff821167
    26 N07e255b9f41142f1ba1770c728e19c1f
    27 N6374685da1bb4c04a5446504d45a2874
    28 schema:publisher N694728a4b0984064a226ee092b9a2527
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037447236
    30 https://doi.org/10.1007/978-3-319-07269-2_12
    31 schema:sdDatePublished 2019-04-15T23:53
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher N6a6db788edfd41c5a3794f017c496b73
    34 schema:url http://link.springer.com/10.1007/978-3-319-07269-2_12
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset chapters
    37 rdf:type schema:Chapter
    38 N01eaed0c61e74555928299ceab566d1e schema:familyName Yao
    39 schema:givenName Jianhua
    40 rdf:type schema:Person
    41 N03e8d329e836467bb5a3e6a1ff821167 schema:name readcube_id
    42 schema:value b261ed6b01d0e33d5631bbbeccefcf99d454d66c5954c0609e45b0db71406bc7
    43 rdf:type schema:PropertyValue
    44 N07e255b9f41142f1ba1770c728e19c1f schema:name dimensions_id
    45 schema:value pub.1037447236
    46 rdf:type schema:PropertyValue
    47 N2f1c536481384dd0ab2d05fd492a2091 schema:isbn 978-3-319-07268-5
    48 978-3-319-07269-2
    49 schema:name Computational Methods and Clinical Applications for Spine Imaging
    50 rdf:type schema:Book
    51 N35950b877a3b45d2b8ba57f238e00f71 rdf:first sg:person.012366760067.46
    52 rdf:rest Nc6b9ef54a1164d6eae81fc9f2fa994f9
    53 N56a42ada69b94085b1205ca403c9e47e rdf:first sg:person.011273675607.63
    54 rdf:rest rdf:nil
    55 N5a0dcac71c674477925fd7d4a156884a rdf:first sg:person.01245047724.07
    56 rdf:rest N35950b877a3b45d2b8ba57f238e00f71
    57 N5ab582d4030243f0a9c7ee3bbac67613 rdf:first N01eaed0c61e74555928299ceab566d1e
    58 rdf:rest N96d900e11bae46a6a3f3cbed85dc4b3d
    59 N6374685da1bb4c04a5446504d45a2874 schema:name doi
    60 schema:value 10.1007/978-3-319-07269-2_12
    61 rdf:type schema:PropertyValue
    62 N694728a4b0984064a226ee092b9a2527 schema:location Cham
    63 schema:name Springer International Publishing
    64 rdf:type schema:Organisation
    65 N6a6db788edfd41c5a3794f017c496b73 schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 N96d900e11bae46a6a3f3cbed85dc4b3d rdf:first Ncd1fad3443e2443c8302bce1cf987860
    68 rdf:rest N9942ebeb3f3546e9ad3ec6e7918d84c1
    69 N98949086f2784524888d28eb5a26da83 schema:familyName Li
    70 schema:givenName Shuo
    71 rdf:type schema:Person
    72 N9942ebeb3f3546e9ad3ec6e7918d84c1 rdf:first N98949086f2784524888d28eb5a26da83
    73 rdf:rest rdf:nil
    74 Nc6b9ef54a1164d6eae81fc9f2fa994f9 rdf:first sg:person.0733025633.91
    75 rdf:rest N56a42ada69b94085b1205ca403c9e47e
    76 Ncd1fad3443e2443c8302bce1cf987860 schema:familyName Klinder
    77 schema:givenName Tobias
    78 rdf:type schema:Person
    79 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Medical and Health Sciences
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Clinical Sciences
    84 rdf:type schema:DefinedTerm
    85 sg:person.011273675607.63 schema:affiliation https://www.grid.ac/institutes/grid.420086.8
    86 schema:familyName Ward
    87 schema:givenName Michael M.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011273675607.63
    89 rdf:type schema:Person
    90 sg:person.012366760067.46 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    91 schema:familyName Yao
    92 schema:givenName Jianhua
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46
    94 rdf:type schema:Person
    95 sg:person.01245047724.07 schema:affiliation https://www.grid.ac/institutes/grid.420086.8
    96 schema:familyName Tan
    97 schema:givenName Sovira
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245047724.07
    99 rdf:type schema:Person
    100 sg:person.0733025633.91 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    101 schema:familyName Yao
    102 schema:givenName Lawrence
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733025633.91
    104 rdf:type schema:Person
    105 sg:pub.10.1023/a:1007979827043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020899731
    106 https://doi.org/10.1023/a:1007979827043
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1002/art.23901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018324488
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1002/art.24888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033554990
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1002/art.27231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012609586
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/j.media.2006.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051425171
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/s0140-6736(07)60635-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027303542
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1088/0031-9155/57/14/4683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059029305
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1109/tmi.2008.920612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695256
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1117/12.769472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035250551
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1136/annrheumdis-2012-202661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040640385
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1136/ard.2004.020503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025135231
    127 rdf:type schema:CreativeWork
    128 https://www.grid.ac/institutes/grid.410305.3 schema:alternateName National Institutes of Health Clinical Center
    129 schema:name Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
    130 rdf:type schema:Organization
    131 https://www.grid.ac/institutes/grid.420086.8 schema:alternateName National Institute of Arthritis and Musculoskeletal and Skin Diseases
    132 schema:name National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
    133 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...