World’s Best Universities and Personalized Rankings View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Mario Inostroza-Ponta , Natalie Jane de Vries , Pablo Moscato

ABSTRACT

This chapter presents a heuristic for a multi-objective ranking problem using a dataset of international interest as an example of its application, namely, the ranking of the world’s top educational institutions. The problem of ranking academic institutions is a subject of keen interest for administrators, consumers, and research policy makers. From a mathematical perspective, the proposed heuristic addresses the need for more transparent models and associated methods related to the problem of identifying sound relative rankings of objects with multiple attributes. The low complexity of the method allows software implementations that scale well for thousands of objects as well as permitting reasonable visualization. It is shown that a simple and multi-objective-aware ranking system can easily be implemented, which naturally leads to intuitive research policies resulting from varying scenarios presented within. The only assumption that this method relies on is the ability to sort the candidate objects according to each given attribute. Thus the attributes could be numerical or ordinal in nature. This helps to avoid the selection of an ad hoc single score based on an arbitrary assignment of attributes’ weights as other heuristics do. To illustrate the use of this proposed methodology, results are presented and obtained using the dataset on the ranking of world universities (of the years 2007–2012), by academic performance, published annually by ARWU. More... »

PAGES

1-37

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-07153-4_60-1

DOI

http://dx.doi.org/10.1007/978-3-319-07153-4_60-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083892648


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Departamento de Ingenier\u00eda Inform\u00e1tica, Universidad de Santiago"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Inostroza-Ponta", 
        "givenName": "Mario", 
        "id": "sg:person.0730727503.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730727503.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "School of Electrical Engineering and Computing, Faculty of Engineering and Built Environment"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Vries", 
        "givenName": "Natalie Jane", 
        "id": "sg:person.014443204615.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014443204615.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "School of Electrical Engineering and Computing, Faculty of Engineering and Built Environment"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moscato", 
        "givenName": "Pablo", 
        "id": "sg:person.01051225363.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051225363.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000324523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-010-0817-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000783283", 
          "https://doi.org/10.1007/s10479-010-0817-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-010-0817-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000783283", 
          "https://doi.org/10.1007/s10479-010-0817-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03797720500260124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004320991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24734-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007978563", 
          "https://doi.org/10.1007/978-3-540-24734-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24734-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007978563", 
          "https://doi.org/10.1007/978-3-540-24734-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-31880-4_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009451792", 
          "https://doi.org/10.1007/978-3-540-31880-4_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-31880-4_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009451792", 
          "https://doi.org/10.1007/978-3-540-31880-4_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2007.08.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009454530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(02)00705-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009684341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(02)00705-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009684341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procs.2012.09.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016533680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74974-5_40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017416807", 
          "https://doi.org/10.1007/978-3-540-74974-5_40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74974-5_40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017416807", 
          "https://doi.org/10.1007/978-3-540-74974-5_40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-28997-2_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018864752", 
          "https://doi.org/10.1007/978-3-642-28997-2_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1741-7015-5-30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019535416", 
          "https://doi.org/10.1186/1741-7015-5-30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aap.2006.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020687804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1871437.1871763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021184676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2014.03.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021802364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.landurbplan.2007.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025102387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dss.2013.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027711283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-3207(75)90033-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028043255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-3207(75)90033-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028043255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(00)00101-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028206081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0260293930180102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033069362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2187836.2187894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034409330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-44719-9_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034472889", 
          "https://doi.org/10.1007/3-540-44719-9_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-44719-9_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034472889", 
          "https://doi.org/10.1007/3-540-44719-9_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/bjo.22.3.259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036310366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01867653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037607813", 
          "https://doi.org/10.1007/bf01867653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01867653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037607813", 
          "https://doi.org/10.1007/bf01867653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1027381906977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038819394", 
          "https://doi.org/10.1023/a:1027381906977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11192-007-1653-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039544241", 
          "https://doi.org/10.1007/s11192-007-1653-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11192-007-1712-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040102798", 
          "https://doi.org/10.1007/s11192-007-1712-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11227-013-0934-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040629539", 
          "https://doi.org/10.1007/s11227-013-0934-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/321526.321534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040716654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.07.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042383608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0102768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042449689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2011.09.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043199421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2011.09.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043199421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.12.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043292148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mcm.2010.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043939043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/exsy.12108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044737960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03797720500260116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045576367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11192-012-0801-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046144816", 
          "https://doi.org/10.1007/s11192-012-0801-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajmg.b.30743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046480422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.respol.2010.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046782563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2012.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048081280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-39261-5_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048582171", 
          "https://doi.org/10.1007/978-3-319-39261-5_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0017249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050436686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13600800701351660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050935033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2013.01.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051466867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2003.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051728693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2003.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051728693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11192-011-0361-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052343240", 
          "https://doi.org/10.1007/s11192-011-0361-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-23254-0_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052612226", 
          "https://doi.org/10.1007/0-387-23254-0_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci010268p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055401240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci010268p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055401240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci800023x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055404460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci800023x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055404460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2006.876362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5465/amle.2009.37012181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072896359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077208591", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2006.260896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077506544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2006.260896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077506544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082702070", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccsa.2013.44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093497785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcdm.2014.7007184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093804440"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "This chapter presents a heuristic for a multi-objective ranking problem using a dataset of international interest as an example of its application, namely, the ranking of the world\u2019s top educational institutions. The problem of ranking academic institutions is a subject of keen interest for administrators, consumers, and research policy makers. From a mathematical perspective, the proposed heuristic addresses the need for more transparent models and associated methods related to the problem of identifying sound relative rankings of objects with multiple attributes. The low complexity of the method allows software implementations that scale well for thousands of objects as well as permitting reasonable visualization. It is shown that a simple and multi-objective-aware ranking system can easily be implemented, which naturally leads to intuitive research policies resulting from varying scenarios presented within. The only assumption that this method relies on is the ability to sort the candidate objects according to each given attribute. Thus the attributes could be numerical or ordinal in nature. This helps to avoid the selection of an ad hoc single score based on an arbitrary assignment of attributes\u2019 weights as other heuristics do. To illustrate the use of this proposed methodology, results are presented and obtained using the dataset on the ranking of world universities (of the years 2007\u20132012), by academic performance, published annually by ARWU.", 
    "editor": [
      {
        "familyName": "Mart\u00ed", 
        "givenName": "Rafael", 
        "type": "Person"
      }, 
      {
        "familyName": "Panos", 
        "givenName": "Pardalos", 
        "type": "Person"
      }, 
      {
        "familyName": "Resende", 
        "givenName": "Mauricio G.C.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-07153-4_60-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3566083", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3567935", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3931445", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-319-07153-4"
      ], 
      "name": "Handbook of Heuristics", 
      "type": "Book"
    }, 
    "name": "World\u2019s Best Universities and Personalized Rankings", 
    "pagination": "1-37", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-07153-4_60-1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "81004adc087d7f35aa64416b6d089f1028b4b4a20e3ee06da88482df628e9bb6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083892648"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-07153-4_60-1", 
      "https://app.dimensions.ai/details/publication/pub.1083892648"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000331.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-07153-4_60-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07153-4_60-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07153-4_60-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07153-4_60-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-07153-4_60-1'


 

This table displays all metadata directly associated to this object as RDF triples.

276 TRIPLES      23 PREDICATES      82 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-07153-4_60-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N7b9d7a5bbd1b4daf8cfb08e5ed3a13b8
4 schema:citation sg:pub.10.1007/0-387-23254-0_17
5 sg:pub.10.1007/3-540-44719-9_23
6 sg:pub.10.1007/978-3-319-39261-5_7
7 sg:pub.10.1007/978-3-540-24734-0
8 sg:pub.10.1007/978-3-540-31880-4_17
9 sg:pub.10.1007/978-3-540-74974-5_40
10 sg:pub.10.1007/978-3-642-28997-2_22
11 sg:pub.10.1007/bf01867653
12 sg:pub.10.1007/s10479-010-0817-8
13 sg:pub.10.1007/s11192-007-1653-8
14 sg:pub.10.1007/s11192-007-1712-1
15 sg:pub.10.1007/s11192-011-0361-6
16 sg:pub.10.1007/s11192-012-0801-y
17 sg:pub.10.1007/s11227-013-0934-7
18 sg:pub.10.1023/a:1027381906977
19 sg:pub.10.1186/1741-7015-5-30
20 https://app.dimensions.ai/details/publication/pub.1077208591
21 https://app.dimensions.ai/details/publication/pub.1082702070
22 https://doi.org/10.1002/ajmg.b.30743
23 https://doi.org/10.1016/0006-3207(75)90033-6
24 https://doi.org/10.1016/j.aap.2006.12.001
25 https://doi.org/10.1016/j.dss.2013.10.001
26 https://doi.org/10.1016/j.ejor.2003.06.007
27 https://doi.org/10.1016/j.ejor.2007.08.013
28 https://doi.org/10.1016/j.ejor.2011.09.032
29 https://doi.org/10.1016/j.ejor.2013.01.022
30 https://doi.org/10.1016/j.eswa.2010.07.029
31 https://doi.org/10.1016/j.eswa.2010.12.119
32 https://doi.org/10.1016/j.eswa.2014.03.036
33 https://doi.org/10.1016/j.landurbplan.2007.10.004
34 https://doi.org/10.1016/j.mcm.2010.10.001
35 https://doi.org/10.1016/j.procs.2012.09.043
36 https://doi.org/10.1016/j.respol.2010.09.003
37 https://doi.org/10.1016/j.sigpro.2012.04.020
38 https://doi.org/10.1016/s0377-2217(00)00101-6
39 https://doi.org/10.1016/s0377-2217(02)00705-1
40 https://doi.org/10.1021/ci010268p
41 https://doi.org/10.1021/ci800023x
42 https://doi.org/10.1080/0260293930180102
43 https://doi.org/10.1080/03797720500260116
44 https://doi.org/10.1080/03797720500260124
45 https://doi.org/10.1080/13600800701351660
46 https://doi.org/10.1093/bioinformatics/btg399
47 https://doi.org/10.1109/iccsa.2013.44
48 https://doi.org/10.1109/iembs.2006.260896
49 https://doi.org/10.1109/mcdm.2014.7007184
50 https://doi.org/10.1109/tevc.2006.876362
51 https://doi.org/10.1111/exsy.12108
52 https://doi.org/10.1145/1871437.1871763
53 https://doi.org/10.1145/2187836.2187894
54 https://doi.org/10.1145/321526.321534
55 https://doi.org/10.1179/bjo.22.3.259
56 https://doi.org/10.1371/journal.pone.0017249
57 https://doi.org/10.1371/journal.pone.0102768
58 https://doi.org/10.5465/amle.2009.37012181
59 schema:datePublished 2016
60 schema:datePublishedReg 2016-01-01
61 schema:description This chapter presents a heuristic for a multi-objective ranking problem using a dataset of international interest as an example of its application, namely, the ranking of the world’s top educational institutions. The problem of ranking academic institutions is a subject of keen interest for administrators, consumers, and research policy makers. From a mathematical perspective, the proposed heuristic addresses the need for more transparent models and associated methods related to the problem of identifying sound relative rankings of objects with multiple attributes. The low complexity of the method allows software implementations that scale well for thousands of objects as well as permitting reasonable visualization. It is shown that a simple and multi-objective-aware ranking system can easily be implemented, which naturally leads to intuitive research policies resulting from varying scenarios presented within. The only assumption that this method relies on is the ability to sort the candidate objects according to each given attribute. Thus the attributes could be numerical or ordinal in nature. This helps to avoid the selection of an ad hoc single score based on an arbitrary assignment of attributes’ weights as other heuristics do. To illustrate the use of this proposed methodology, results are presented and obtained using the dataset on the ranking of world universities (of the years 2007–2012), by academic performance, published annually by ARWU.
62 schema:editor N07a483fc00804295bca5d36fb50d9219
63 schema:genre chapter
64 schema:inLanguage en
65 schema:isAccessibleForFree false
66 schema:isPartOf N96d605cb2dc14d5ab6cde628c9c6cfe7
67 schema:name World’s Best Universities and Personalized Rankings
68 schema:pagination 1-37
69 schema:productId N03cdf052dd6c4bf4960efb00ca8b8f1d
70 N926453ae938a4aa28f3bacc901ca47c8
71 N9806dbd512f649d0a1f16fe436e7b66c
72 schema:publisher Nc284cdcec6614a069fb77fd864902fc7
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083892648
74 https://doi.org/10.1007/978-3-319-07153-4_60-1
75 schema:sdDatePublished 2019-04-15T23:05
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher Nd558f4f989b745c2a36a97a325474e44
78 schema:url http://link.springer.com/10.1007/978-3-319-07153-4_60-1
79 sgo:license sg:explorer/license/
80 sgo:sdDataset chapters
81 rdf:type schema:Chapter
82 N03cdf052dd6c4bf4960efb00ca8b8f1d schema:name dimensions_id
83 schema:value pub.1083892648
84 rdf:type schema:PropertyValue
85 N07a483fc00804295bca5d36fb50d9219 rdf:first N9b271fe9a7e54542b8119507d07f5cbc
86 rdf:rest Na9b315ec2ff0434f8c532254eee8e67a
87 N2ad1f55e3bb149c49887827bd5521d07 schema:familyName Panos
88 schema:givenName Pardalos
89 rdf:type schema:Person
90 N534af7a2ef0e41bb9724070de61e0bfd schema:name School of Electrical Engineering and Computing, Faculty of Engineering and Built Environment
91 rdf:type schema:Organization
92 N678f845c35104da688ad4fb06be810d1 rdf:first N7032be91c4fa4a74982e07e2bcef2460
93 rdf:rest rdf:nil
94 N7032be91c4fa4a74982e07e2bcef2460 schema:familyName Resende
95 schema:givenName Mauricio G.C.
96 rdf:type schema:Person
97 N7b9d7a5bbd1b4daf8cfb08e5ed3a13b8 rdf:first sg:person.0730727503.52
98 rdf:rest Nb5e2af700f964502ae85596b6ee8a9c1
99 N86e821670b5c45d5a97f4e81d2c2829c rdf:first sg:person.01051225363.23
100 rdf:rest rdf:nil
101 N926453ae938a4aa28f3bacc901ca47c8 schema:name readcube_id
102 schema:value 81004adc087d7f35aa64416b6d089f1028b4b4a20e3ee06da88482df628e9bb6
103 rdf:type schema:PropertyValue
104 N96d605cb2dc14d5ab6cde628c9c6cfe7 schema:isbn 978-3-319-07153-4
105 schema:name Handbook of Heuristics
106 rdf:type schema:Book
107 N9806dbd512f649d0a1f16fe436e7b66c schema:name doi
108 schema:value 10.1007/978-3-319-07153-4_60-1
109 rdf:type schema:PropertyValue
110 N9b271fe9a7e54542b8119507d07f5cbc schema:familyName Martí
111 schema:givenName Rafael
112 rdf:type schema:Person
113 N9f14075c79b348b9a1d0233ab145156a schema:name School of Electrical Engineering and Computing, Faculty of Engineering and Built Environment
114 rdf:type schema:Organization
115 Na9b315ec2ff0434f8c532254eee8e67a rdf:first N2ad1f55e3bb149c49887827bd5521d07
116 rdf:rest N678f845c35104da688ad4fb06be810d1
117 Nb5e2af700f964502ae85596b6ee8a9c1 rdf:first sg:person.014443204615.56
118 rdf:rest N86e821670b5c45d5a97f4e81d2c2829c
119 Nc284cdcec6614a069fb77fd864902fc7 schema:location Cham
120 schema:name Springer International Publishing
121 rdf:type schema:Organisation
122 Nd558f4f989b745c2a36a97a325474e44 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 Ne3e4f5452d2d43ca9440a2bc2ecd11d2 schema:name Departamento de Ingeniería Informática, Universidad de Santiago
125 rdf:type schema:Organization
126 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
127 schema:name Information and Computing Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
130 schema:name Artificial Intelligence and Image Processing
131 rdf:type schema:DefinedTerm
132 sg:grant.3566083 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-07153-4_60-1
133 rdf:type schema:MonetaryGrant
134 sg:grant.3567935 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-07153-4_60-1
135 rdf:type schema:MonetaryGrant
136 sg:grant.3931445 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-07153-4_60-1
137 rdf:type schema:MonetaryGrant
138 sg:person.01051225363.23 schema:affiliation N9f14075c79b348b9a1d0233ab145156a
139 schema:familyName Moscato
140 schema:givenName Pablo
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051225363.23
142 rdf:type schema:Person
143 sg:person.014443204615.56 schema:affiliation N534af7a2ef0e41bb9724070de61e0bfd
144 schema:familyName de Vries
145 schema:givenName Natalie Jane
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014443204615.56
147 rdf:type schema:Person
148 sg:person.0730727503.52 schema:affiliation Ne3e4f5452d2d43ca9440a2bc2ecd11d2
149 schema:familyName Inostroza-Ponta
150 schema:givenName Mario
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730727503.52
152 rdf:type schema:Person
153 sg:pub.10.1007/0-387-23254-0_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052612226
154 https://doi.org/10.1007/0-387-23254-0_17
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/3-540-44719-9_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034472889
157 https://doi.org/10.1007/3-540-44719-9_23
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/978-3-319-39261-5_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048582171
160 https://doi.org/10.1007/978-3-319-39261-5_7
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/978-3-540-24734-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007978563
163 https://doi.org/10.1007/978-3-540-24734-0
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/978-3-540-31880-4_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009451792
166 https://doi.org/10.1007/978-3-540-31880-4_17
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/978-3-540-74974-5_40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017416807
169 https://doi.org/10.1007/978-3-540-74974-5_40
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/978-3-642-28997-2_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018864752
172 https://doi.org/10.1007/978-3-642-28997-2_22
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/bf01867653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037607813
175 https://doi.org/10.1007/bf01867653
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s10479-010-0817-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000783283
178 https://doi.org/10.1007/s10479-010-0817-8
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s11192-007-1653-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039544241
181 https://doi.org/10.1007/s11192-007-1653-8
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s11192-007-1712-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040102798
184 https://doi.org/10.1007/s11192-007-1712-1
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s11192-011-0361-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052343240
187 https://doi.org/10.1007/s11192-011-0361-6
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/s11192-012-0801-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1046144816
190 https://doi.org/10.1007/s11192-012-0801-y
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/s11227-013-0934-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040629539
193 https://doi.org/10.1007/s11227-013-0934-7
194 rdf:type schema:CreativeWork
195 sg:pub.10.1023/a:1027381906977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038819394
196 https://doi.org/10.1023/a:1027381906977
197 rdf:type schema:CreativeWork
198 sg:pub.10.1186/1741-7015-5-30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019535416
199 https://doi.org/10.1186/1741-7015-5-30
200 rdf:type schema:CreativeWork
201 https://app.dimensions.ai/details/publication/pub.1077208591 schema:CreativeWork
202 https://app.dimensions.ai/details/publication/pub.1082702070 schema:CreativeWork
203 https://doi.org/10.1002/ajmg.b.30743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046480422
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/0006-3207(75)90033-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028043255
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.aap.2006.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020687804
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.dss.2013.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027711283
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.ejor.2003.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051728693
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.ejor.2007.08.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009454530
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.ejor.2011.09.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043199421
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.ejor.2013.01.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051466867
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.eswa.2010.07.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042383608
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.eswa.2010.12.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043292148
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.eswa.2014.03.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021802364
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.landurbplan.2007.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025102387
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.mcm.2010.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043939043
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.procs.2012.09.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016533680
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.respol.2010.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046782563
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.sigpro.2012.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048081280
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/s0377-2217(00)00101-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028206081
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/s0377-2217(02)00705-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009684341
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1021/ci010268p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055401240
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1021/ci800023x schema:sameAs https://app.dimensions.ai/details/publication/pub.1055404460
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1080/0260293930180102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033069362
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1080/03797720500260116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045576367
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1080/03797720500260124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004320991
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1080/13600800701351660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050935033
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1093/bioinformatics/btg399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000324523
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1109/iccsa.2013.44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093497785
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1109/iembs.2006.260896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077506544
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1109/mcdm.2014.7007184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093804440
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1109/tevc.2006.876362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604747
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1111/exsy.12108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044737960
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1145/1871437.1871763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021184676
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1145/2187836.2187894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034409330
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1145/321526.321534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040716654
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1179/bjo.22.3.259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036310366
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1371/journal.pone.0017249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050436686
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1371/journal.pone.0102768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042449689
274 rdf:type schema:CreativeWork
275 https://doi.org/10.5465/amle.2009.37012181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072896359
276 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...