Ontology type: schema:Chapter Open Access: True
2014
AUTHORSVolker Diekert , Artur Jeż , Wojciech Plandowski
ABSTRACTThe aim of this paper is to present a PSPACE algorithm which yields a finite graph of exponential size and which describes the set of all solutions of equations in free groups and monoids with involution in the presence of rational constraints. This became possible due to the recently invented recompression technique of the second author.He successfully applied the recompression technique for pure word equations without involution or rational constraints. In particular, his method could not be used as a black box for free groups (even without rational constraints). Actually, the presence of an involution (inverse elements) and rational constraints complicates the situation and some additional analysis is necessary. Still, the recompression technique is powerful enough to simplify proofs for many existing results in the literature. In particular, it simplifies proofs that solving word equations is in PSPACE (Plandowski 1999) and the corresponding result for equations in free groups with rational constraints (Diekert, Hagenah and Gutiérrez 2001). As a byproduct we obtain a direct proof that it is decidable in PSPACE whether or not the solution set is finite. More... »
PAGES1-15
Computer Science - Theory and Applications
ISBN
978-3-319-06685-1
978-3-319-06686-8
http://scigraph.springernature.com/pub.10.1007/978-3-319-06686-8_1
DOIhttp://dx.doi.org/10.1007/978-3-319-06686-8_1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1050228689
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institut f\u00fcr Formale Methoden der Informatik, University of Stuttgart, Germany",
"id": "http://www.grid.ac/institutes/grid.5719.a",
"name": [
"Institut f\u00fcr Formale Methoden der Informatik, University of Stuttgart, Germany"
],
"type": "Organization"
},
"familyName": "Diekert",
"givenName": "Volker",
"id": "sg:person.012621714747.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621714747.48"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Informatics, University of Warsaw, Poland",
"id": "http://www.grid.ac/institutes/grid.12847.38",
"name": [
"Institute of Computer Science, University of Wroclaw, Poland",
"Institute of Informatics, University of Warsaw, Poland"
],
"type": "Organization"
},
"familyName": "Je\u017c",
"givenName": "Artur",
"id": "sg:person.015252371751.76",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015252371751.76"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Max Planck Institute f\u00fcr Informatik, Saarbr\u00fccken, Germany",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Max Planck Institute f\u00fcr Informatik, Saarbr\u00fccken, Germany"
],
"type": "Organization"
},
"familyName": "Plandowski",
"givenName": "Wojciech",
"id": "sg:person.010207617143.19",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010207617143.19"
],
"type": "Person"
}
],
"datePublished": "2014",
"datePublishedReg": "2014-01-01",
"description": "The aim of this paper is to present a PSPACE algorithm which yields a finite graph of exponential size and which describes the set of all solutions of equations in free groups and monoids with involution in the presence of rational constraints. This became possible due to the recently invented recompression technique of the second author.He successfully applied the recompression technique for pure word equations without involution or rational constraints. In particular, his method could not be used as a\u00a0black box for free groups (even without rational constraints). Actually, the presence of an involution (inverse elements) and rational constraints complicates the situation and some additional analysis is necessary. Still, the recompression technique is powerful enough to simplify proofs for many existing results in the literature. In particular, it simplifies proofs that solving word equations is in PSPACE (Plandowski 1999) and the corresponding result for equations in free groups with rational constraints (Diekert, Hagenah and Guti\u00e9rrez 2001). As a byproduct we obtain a\u00a0direct proof that it is decidable in PSPACE whether or not the solution set is finite.",
"editor": [
{
"familyName": "Hirsch",
"givenName": "Edward A.",
"type": "Person"
},
{
"familyName": "Kuznetsov",
"givenName": "Sergei O.",
"type": "Person"
},
{
"familyName": "Pin",
"givenName": "Jean-\u00c9ric",
"type": "Person"
},
{
"familyName": "Vereshchagin",
"givenName": "Nikolay K.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-06686-8_1",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-319-06685-1",
"978-3-319-06686-8"
],
"name": "Computer Science - Theory and Applications",
"type": "Book"
},
"keywords": [
"solution of equations",
"recompression technique",
"free group",
"word equations",
"rational constraints",
"finite graphs",
"solution set",
"existing results",
"PSPACE algorithm",
"equations",
"corresponding results",
"second author",
"exponential size",
"direct proof",
"constraints",
"monoids",
"PSPACE",
"proof",
"solution",
"involution",
"graph",
"set",
"black box",
"algorithm",
"technique",
"results",
"situation",
"size",
"analysis",
"byproducts",
"box",
"presence",
"literature",
"authors",
"Additional analyses",
"group",
"aim",
"paper",
"method"
],
"name": "Finding All Solutions of Equations in Free Groups and Monoids with Involution",
"pagination": "1-15",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1050228689"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-06686-8_1"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-06686-8_1",
"https://app.dimensions.ai/details/publication/pub.1050228689"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:49",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_360.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-06686-8_1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-06686-8_1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-06686-8_1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-06686-8_1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-06686-8_1'
This table displays all metadata directly associated to this object as RDF triples.
135 TRIPLES
23 PREDICATES
65 URIs
58 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-06686-8_1 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0103 |
3 | ″ | schema:author | N2d78f9136c0244708b6ea1f217798687 |
4 | ″ | schema:datePublished | 2014 |
5 | ″ | schema:datePublishedReg | 2014-01-01 |
6 | ″ | schema:description | The aim of this paper is to present a PSPACE algorithm which yields a finite graph of exponential size and which describes the set of all solutions of equations in free groups and monoids with involution in the presence of rational constraints. This became possible due to the recently invented recompression technique of the second author.He successfully applied the recompression technique for pure word equations without involution or rational constraints. In particular, his method could not be used as a black box for free groups (even without rational constraints). Actually, the presence of an involution (inverse elements) and rational constraints complicates the situation and some additional analysis is necessary. Still, the recompression technique is powerful enough to simplify proofs for many existing results in the literature. In particular, it simplifies proofs that solving word equations is in PSPACE (Plandowski 1999) and the corresponding result for equations in free groups with rational constraints (Diekert, Hagenah and Gutiérrez 2001). As a byproduct we obtain a direct proof that it is decidable in PSPACE whether or not the solution set is finite. |
7 | ″ | schema:editor | N7d28a796b0694747bacf70034a545fc0 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | Nc4e1cb06a8bc47cfb0bdf0d2f3632e1d |
12 | ″ | schema:keywords | Additional analyses |
13 | ″ | ″ | PSPACE |
14 | ″ | ″ | PSPACE algorithm |
15 | ″ | ″ | aim |
16 | ″ | ″ | algorithm |
17 | ″ | ″ | analysis |
18 | ″ | ″ | authors |
19 | ″ | ″ | black box |
20 | ″ | ″ | box |
21 | ″ | ″ | byproducts |
22 | ″ | ″ | constraints |
23 | ″ | ″ | corresponding results |
24 | ″ | ″ | direct proof |
25 | ″ | ″ | equations |
26 | ″ | ″ | existing results |
27 | ″ | ″ | exponential size |
28 | ″ | ″ | finite graphs |
29 | ″ | ″ | free group |
30 | ″ | ″ | graph |
31 | ″ | ″ | group |
32 | ″ | ″ | involution |
33 | ″ | ″ | literature |
34 | ″ | ″ | method |
35 | ″ | ″ | monoids |
36 | ″ | ″ | paper |
37 | ″ | ″ | presence |
38 | ″ | ″ | proof |
39 | ″ | ″ | rational constraints |
40 | ″ | ″ | recompression technique |
41 | ″ | ″ | results |
42 | ″ | ″ | second author |
43 | ″ | ″ | set |
44 | ″ | ″ | situation |
45 | ″ | ″ | size |
46 | ″ | ″ | solution |
47 | ″ | ″ | solution of equations |
48 | ″ | ″ | solution set |
49 | ″ | ″ | technique |
50 | ″ | ″ | word equations |
51 | ″ | schema:name | Finding All Solutions of Equations in Free Groups and Monoids with Involution |
52 | ″ | schema:pagination | 1-15 |
53 | ″ | schema:productId | N2a7e17cf8f434cc7a32e6d6f6d5c65a8 |
54 | ″ | ″ | N96e1c40cd6bd427eacc04e2c6c37192c |
55 | ″ | schema:publisher | N08e0f3d7689f457093d91ac2541b0ef5 |
56 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1050228689 |
57 | ″ | ″ | https://doi.org/10.1007/978-3-319-06686-8_1 |
58 | ″ | schema:sdDatePublished | 2022-05-10T10:49 |
59 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
60 | ″ | schema:sdPublisher | N2064f1e866b746c7bbb6b7661f08d854 |
61 | ″ | schema:url | https://doi.org/10.1007/978-3-319-06686-8_1 |
62 | ″ | sgo:license | sg:explorer/license/ |
63 | ″ | sgo:sdDataset | chapters |
64 | ″ | rdf:type | schema:Chapter |
65 | N08e0f3d7689f457093d91ac2541b0ef5 | schema:name | Springer Nature |
66 | ″ | rdf:type | schema:Organisation |
67 | N0adfa10a390b4308b6461c55b4f34a27 | schema:familyName | Vereshchagin |
68 | ″ | schema:givenName | Nikolay K. |
69 | ″ | rdf:type | schema:Person |
70 | N0c6cfd406a4d4128b1ee7fe63804054c | rdf:first | N3b3b06dd55f646bd8e9d28f9fe1761df |
71 | ″ | rdf:rest | Nc37fdfd46d8f4209bc2e889e75aa9796 |
72 | N2064f1e866b746c7bbb6b7661f08d854 | schema:name | Springer Nature - SN SciGraph project |
73 | ″ | rdf:type | schema:Organization |
74 | N2a7e17cf8f434cc7a32e6d6f6d5c65a8 | schema:name | doi |
75 | ″ | schema:value | 10.1007/978-3-319-06686-8_1 |
76 | ″ | rdf:type | schema:PropertyValue |
77 | N2d78f9136c0244708b6ea1f217798687 | rdf:first | sg:person.012621714747.48 |
78 | ″ | rdf:rest | N4c0cbab80c3e4b23a40da4c182a4d546 |
79 | N3b3b06dd55f646bd8e9d28f9fe1761df | schema:familyName | Pin |
80 | ″ | schema:givenName | Jean-Éric |
81 | ″ | rdf:type | schema:Person |
82 | N4c0cbab80c3e4b23a40da4c182a4d546 | rdf:first | sg:person.015252371751.76 |
83 | ″ | rdf:rest | N4d065a6b7c3a4291a9f22e414408e824 |
84 | N4d065a6b7c3a4291a9f22e414408e824 | rdf:first | sg:person.010207617143.19 |
85 | ″ | rdf:rest | rdf:nil |
86 | N4d7aad53462a4067b54d4caa2c3b5087 | schema:familyName | Kuznetsov |
87 | ″ | schema:givenName | Sergei O. |
88 | ″ | rdf:type | schema:Person |
89 | N663168e0ea064336ac9588fca67a4900 | schema:familyName | Hirsch |
90 | ″ | schema:givenName | Edward A. |
91 | ″ | rdf:type | schema:Person |
92 | N7d28a796b0694747bacf70034a545fc0 | rdf:first | N663168e0ea064336ac9588fca67a4900 |
93 | ″ | rdf:rest | Nd17c8a3420b24bcabd374e83bca3a416 |
94 | N96e1c40cd6bd427eacc04e2c6c37192c | schema:name | dimensions_id |
95 | ″ | schema:value | pub.1050228689 |
96 | ″ | rdf:type | schema:PropertyValue |
97 | Nc37fdfd46d8f4209bc2e889e75aa9796 | rdf:first | N0adfa10a390b4308b6461c55b4f34a27 |
98 | ″ | rdf:rest | rdf:nil |
99 | Nc4e1cb06a8bc47cfb0bdf0d2f3632e1d | schema:isbn | 978-3-319-06685-1 |
100 | ″ | ″ | 978-3-319-06686-8 |
101 | ″ | schema:name | Computer Science - Theory and Applications |
102 | ″ | rdf:type | schema:Book |
103 | Nd17c8a3420b24bcabd374e83bca3a416 | rdf:first | N4d7aad53462a4067b54d4caa2c3b5087 |
104 | ″ | rdf:rest | N0c6cfd406a4d4128b1ee7fe63804054c |
105 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
106 | ″ | schema:name | Mathematical Sciences |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | anzsrc-for:0103 | schema:inDefinedTermSet | anzsrc-for: |
109 | ″ | schema:name | Numerical and Computational Mathematics |
110 | ″ | rdf:type | schema:DefinedTerm |
111 | sg:person.010207617143.19 | schema:affiliation | grid-institutes:None |
112 | ″ | schema:familyName | Plandowski |
113 | ″ | schema:givenName | Wojciech |
114 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010207617143.19 |
115 | ″ | rdf:type | schema:Person |
116 | sg:person.012621714747.48 | schema:affiliation | grid-institutes:grid.5719.a |
117 | ″ | schema:familyName | Diekert |
118 | ″ | schema:givenName | Volker |
119 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621714747.48 |
120 | ″ | rdf:type | schema:Person |
121 | sg:person.015252371751.76 | schema:affiliation | grid-institutes:grid.12847.38 |
122 | ″ | schema:familyName | Jeż |
123 | ″ | schema:givenName | Artur |
124 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015252371751.76 |
125 | ″ | rdf:type | schema:Person |
126 | grid-institutes:None | schema:alternateName | Max Planck Institute für Informatik, Saarbrücken, Germany |
127 | ″ | schema:name | Max Planck Institute für Informatik, Saarbrücken, Germany |
128 | ″ | rdf:type | schema:Organization |
129 | grid-institutes:grid.12847.38 | schema:alternateName | Institute of Informatics, University of Warsaw, Poland |
130 | ″ | schema:name | Institute of Computer Science, University of Wroclaw, Poland |
131 | ″ | ″ | Institute of Informatics, University of Warsaw, Poland |
132 | ″ | rdf:type | schema:Organization |
133 | grid-institutes:grid.5719.a | schema:alternateName | Institut für Formale Methoden der Informatik, University of Stuttgart, Germany |
134 | ″ | schema:name | Institut für Formale Methoden der Informatik, University of Stuttgart, Germany |
135 | ″ | rdf:type | schema:Organization |