A Finite Volume Scheme with the Discrete Maximum Principle for Diffusion Equations on Polyhedral Meshes View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Alexey Chernyshenko , Yuri Vassilevski

ABSTRACT

We present a cell-centered finite volume (FV) scheme with the compact stencil formed mostly by the closest neighboring cells. The discrete solution satisfies the discrete maximum principle and approximates the exact solution with second-order accuracy. The coefficients in the FV stencil depend on the solution; therefore, the FV scheme is nonlinear. The scheme is applied to the steady state diffusion equation discretized on a general polyhedral mesh. More... »

PAGES

197-205

Book

TITLE

Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects

ISBN

978-3-319-05683-8
978-3-319-05684-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-05684-5_18

DOI

http://dx.doi.org/10.1007/978-3-319-05684-5_18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004211110


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Numerical Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.465296.a", 
          "name": [
            "Institute of Numerical Mathematics, Gubkina 8, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chernyshenko", 
        "givenName": "Alexey", 
        "id": "sg:person.016434506777.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016434506777.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Numerical Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.465296.a", 
          "name": [
            "Institute of Numerical Mathematics, Gubkina 8, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vassilevski", 
        "givenName": "Yuri", 
        "id": "sg:person.012104371362.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012104371362.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.crma.2009.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001225864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2007.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007576573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2013.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010400919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crma.2005.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012084591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/rnam-2012-0020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025383669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/rjnamm.2009.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034163284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2010.12.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047921999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/120867846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062869172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218202514400041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062963540"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "We present a cell-centered finite volume (FV) scheme with the compact stencil formed mostly by the closest neighboring cells. The discrete solution satisfies the discrete maximum principle and approximates the exact solution with second-order accuracy. The coefficients in the FV stencil depend on the solution; therefore, the FV scheme is nonlinear. The scheme is applied to the steady state diffusion equation discretized on a general polyhedral mesh.", 
    "editor": [
      {
        "familyName": "Fuhrmann", 
        "givenName": "J\u00fcrgen", 
        "type": "Person"
      }, 
      {
        "familyName": "Ohlberger", 
        "givenName": "Mario", 
        "type": "Person"
      }, 
      {
        "familyName": "Rohde", 
        "givenName": "Christian", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-05684-5_18", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5329061", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6756122", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-319-05683-8", 
        "978-3-319-05684-5"
      ], 
      "name": "Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects", 
      "type": "Book"
    }, 
    "name": "A Finite Volume Scheme with the Discrete Maximum Principle for Diffusion Equations on Polyhedral Meshes", 
    "pagination": "197-205", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-05684-5_18"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1410fa10fa040afcf64dff7562dffceb8deb950f86493ee6dc8bcb0782aa9d47"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004211110"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-05684-5_18", 
      "https://app.dimensions.ai/details/publication/pub.1004211110"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000245.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-05684-5_18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-05684-5_18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-05684-5_18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-05684-5_18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-05684-5_18'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-05684-5_18 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N9e83673662264bfe8b9a8f26d5c7dca4
4 schema:citation https://doi.org/10.1016/j.crma.2005.10.010
5 https://doi.org/10.1016/j.crma.2009.03.013
6 https://doi.org/10.1016/j.jcp.2007.08.008
7 https://doi.org/10.1016/j.jcp.2010.12.037
8 https://doi.org/10.1016/j.jcp.2013.05.013
9 https://doi.org/10.1137/120867846
10 https://doi.org/10.1142/s0218202514400041
11 https://doi.org/10.1515/rjnamm.2009.014
12 https://doi.org/10.1515/rnam-2012-0020
13 schema:datePublished 2014
14 schema:datePublishedReg 2014-01-01
15 schema:description We present a cell-centered finite volume (FV) scheme with the compact stencil formed mostly by the closest neighboring cells. The discrete solution satisfies the discrete maximum principle and approximates the exact solution with second-order accuracy. The coefficients in the FV stencil depend on the solution; therefore, the FV scheme is nonlinear. The scheme is applied to the steady state diffusion equation discretized on a general polyhedral mesh.
16 schema:editor N2c34ffa7071741308a1fe6a98d162064
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N315c9d0519914a7d94347558530a1062
21 schema:name A Finite Volume Scheme with the Discrete Maximum Principle for Diffusion Equations on Polyhedral Meshes
22 schema:pagination 197-205
23 schema:productId N7988528dec57403fb950de917876b504
24 Na4ee3086ba6749ef9babece7cf4a9daa
25 Ncdd9bb751d2b4b59a6d3bc42f71ecfc2
26 schema:publisher Nd096467ecf604c009f186636e13ce60a
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004211110
28 https://doi.org/10.1007/978-3-319-05684-5_18
29 schema:sdDatePublished 2019-04-16T00:46
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Ndea89f4706174f88ae2c4ec54b6530a6
32 schema:url http://link.springer.com/10.1007/978-3-319-05684-5_18
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N0acdd0b93e6e4bc5af0e86d66971642e rdf:first Ne0ba056f895f4f64a5cc05e295b43afa
37 rdf:rest N998d61e6def446fcb62f3045d95566ed
38 N2c34ffa7071741308a1fe6a98d162064 rdf:first N5aa1c5f1f1854d739e658e9864459f68
39 rdf:rest N0acdd0b93e6e4bc5af0e86d66971642e
40 N315c9d0519914a7d94347558530a1062 schema:isbn 978-3-319-05683-8
41 978-3-319-05684-5
42 schema:name Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects
43 rdf:type schema:Book
44 N5aa1c5f1f1854d739e658e9864459f68 schema:familyName Fuhrmann
45 schema:givenName Jürgen
46 rdf:type schema:Person
47 N7988528dec57403fb950de917876b504 schema:name readcube_id
48 schema:value 1410fa10fa040afcf64dff7562dffceb8deb950f86493ee6dc8bcb0782aa9d47
49 rdf:type schema:PropertyValue
50 N9918929423d141df9af706f777590ca6 schema:familyName Rohde
51 schema:givenName Christian
52 rdf:type schema:Person
53 N998d61e6def446fcb62f3045d95566ed rdf:first N9918929423d141df9af706f777590ca6
54 rdf:rest rdf:nil
55 N9e83673662264bfe8b9a8f26d5c7dca4 rdf:first sg:person.016434506777.04
56 rdf:rest Nb42ff775087341909bbdf9f2716ac9b6
57 Na4ee3086ba6749ef9babece7cf4a9daa schema:name doi
58 schema:value 10.1007/978-3-319-05684-5_18
59 rdf:type schema:PropertyValue
60 Nb42ff775087341909bbdf9f2716ac9b6 rdf:first sg:person.012104371362.91
61 rdf:rest rdf:nil
62 Ncdd9bb751d2b4b59a6d3bc42f71ecfc2 schema:name dimensions_id
63 schema:value pub.1004211110
64 rdf:type schema:PropertyValue
65 Nd096467ecf604c009f186636e13ce60a schema:location Cham
66 schema:name Springer International Publishing
67 rdf:type schema:Organisation
68 Ndea89f4706174f88ae2c4ec54b6530a6 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Ne0ba056f895f4f64a5cc05e295b43afa schema:familyName Ohlberger
71 schema:givenName Mario
72 rdf:type schema:Person
73 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
74 schema:name Biological Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
77 schema:name Biochemistry and Cell Biology
78 rdf:type schema:DefinedTerm
79 sg:grant.5329061 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-05684-5_18
80 rdf:type schema:MonetaryGrant
81 sg:grant.6756122 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-05684-5_18
82 rdf:type schema:MonetaryGrant
83 sg:person.012104371362.91 schema:affiliation https://www.grid.ac/institutes/grid.465296.a
84 schema:familyName Vassilevski
85 schema:givenName Yuri
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012104371362.91
87 rdf:type schema:Person
88 sg:person.016434506777.04 schema:affiliation https://www.grid.ac/institutes/grid.465296.a
89 schema:familyName Chernyshenko
90 schema:givenName Alexey
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016434506777.04
92 rdf:type schema:Person
93 https://doi.org/10.1016/j.crma.2005.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012084591
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.crma.2009.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001225864
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.jcp.2007.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007576573
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.jcp.2010.12.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047921999
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.jcp.2013.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010400919
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1137/120867846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062869172
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1142/s0218202514400041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062963540
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1515/rjnamm.2009.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034163284
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1515/rnam-2012-0020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025383669
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.465296.a schema:alternateName Institute of Numerical Mathematics
112 schema:name Institute of Numerical Mathematics, Gubkina 8, Moscow, Russia
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...