Efficient and Secure Algorithms for GLV-Based Scalar Multiplication and Their Implementation on GLV-GLS Curves View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Armando Faz-Hernández , Patrick Longa , Ana H. Sánchez

ABSTRACT

We propose efficient algorithms and formulas that improve the performance of side-channel protected scalar multiplication exploiting the Gallant-Lambert-Vanstone (CRYPTO 2001) and Galbraith-Lin-Scott (EUROCRYPT 2009) methods. Firstly, by adapting Feng et al.’s recoding to the GLV setting, we derive new regular algorithms for variable-base scalar multiplication that offer protection against simple side-channel and timing attacks. Secondly, we propose an efficient technique that interleaves ARM-based and NEON-based multiprecision operations over an extension field, as typically found on GLS curves and pairing computations, to improve performance on modern ARM processors. Finally, we showcase the efficiency of the proposed techniques by implementing a state-of-the-art GLV-GLS curve in twisted Edwards form defined over \(\mathbb{F}_{p^2}\), which supports a four dimensional decomposition of the scalar and runs in constant time, i.e., it is fully protected against timing attacks. For instance, using a precomputed table of only 512 bytes, we compute a variable-base scalar multiplication in 92,000 cycles on an Intel Ivy Bridge processor and in 244,000 cycles on an ARM Cortex-A15 processor. Our benchmark results and the proposed techniques contribute to the improvement of the state-of-the-art performance of elliptic curve computations. Most notably, our techniques allow us to reduce the cost of adding protection against timing attacks in the GLV-based variable-base scalar multiplication computation to below 10%. More... »

PAGES

1-27

References to SciGraph publications

  • 2003-02-28. The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar Multiplications Secure against Side Channel Attacks in TOPICS IN CRYPTOLOGY — CT-RSA 2003
  • 2005. Countermeasures for Preventing Comb Method Against SCA Attacks in INFORMATION SECURITY PRACTICE AND EXPERIENCE
  • 2012-06. Implementing the 4-dimensional GLV method on GLS elliptic curves with j-invariant 0 in DESIGNS, CODES AND CRYPTOGRAPHY
  • 1998. The solution of McCurley's discrete log challenge in ADVANCES IN CRYPTOLOGY — CRYPTO '98
  • 2013. NEON Implementation of an Attribute-Based Encryption Scheme in APPLIED CRYPTOGRAPHY AND NETWORK SECURITY
  • 2011-07. Endomorphisms for Faster Elliptic Curve Cryptography on a Large Class of Curves in JOURNAL OF CRYPTOLOGY
  • 2011. High-Speed High-Security Signatures in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS – CHES 2011
  • 2012. Four-Dimensional Gallant-Lambert-Vanstone Scalar Multiplication in ADVANCES IN CRYPTOLOGY – ASIACRYPT 2012
  • 2002-04-23. A Countermeasure against One Physical Cryptanalysis May Benefit Another Attack in INFORMATION SECURITY AND CRYPTOLOGY — ICISC 2001
  • 2001-07-13. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems in ADVANCES IN CRYPTOLOGY — CRYPTO ’96
  • 2001-07-13. More Flexible Exponentiation with Precomputation in ADVANCES IN CRYPTOLOGY — CRYPTO ’94
  • 1999. Differential Power Analysis in ADVANCES IN CRYPTOLOGY — CRYPTO’ 99
  • 2012. NEON Crypto in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS – CHES 2012
  • 2006. Cache Attacks and Countermeasures: The Case of AES in TOPICS IN CRYPTOLOGY – CT-RSA 2006
  • 2013. Families of Fast Elliptic Curves from ℚ-curves in ADVANCES IN CRYPTOLOGY - ASIACRYPT 2013
  • 2013. Four-Dimensional GLV via the Weil Restriction in ADVANCES IN CRYPTOLOGY - ASIACRYPT 2013
  • 2008. Twisted Edwards Curves in PROGRESS IN CRYPTOLOGY – AFRICACRYPT 2008
  • 2008. Twisted Edwards Curves Revisited in ADVANCES IN CRYPTOLOGY - ASIACRYPT 2008
  • 2005. Elliptic Curve Cryptography in ENCYCLOPEDIA OF CRYPTOGRAPHY AND SECURITY
  • 2010. Efficient Techniques for High-Speed Elliptic Curve Cryptography in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS, CHES 2010
  • 2009. Exponent Recoding and Regular Exponentiation Algorithms in PROGRESS IN CRYPTOLOGY – AFRICACRYPT 2009
  • 2001. Algorithms for Multi-exponentiation in SELECTED AREAS IN CRYPTOGRAPHY
  • 2011. Faster Explicit Formulas for Computing Pairings over Ordinary Curves in ADVANCES IN CRYPTOLOGY – EUROCRYPT 2011
  • 2006. Signed MSB-Set Comb Method for Elliptic Curve Point Multiplication in INFORMATION SECURITY PRACTICE AND EXPERIENCE
  • 2013. Fast Cryptography in Genus 2 in ADVANCES IN CRYPTOLOGY – EUROCRYPT 2013
  • 2013. Lambda Coordinates for Binary Elliptic Curves in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2013
  • 2013. High-Performance Scalar Multiplication Using 8-Dimensional GLV/GLS Decomposition in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2013
  • 2001-08-02. Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms in ADVANCES IN CRYPTOLOGY — CRYPTO 2001
  • 2009. Endomorphisms for Faster Elliptic Curve Cryptography on a Large Class of Curves in ADVANCES IN CRYPTOLOGY - EUROCRYPT 2009
  • Book

    TITLE

    Topics in Cryptology – CT-RSA 2014

    ISBN

    978-3-319-04851-2
    978-3-319-04852-9

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-04852-9_1

    DOI

    http://dx.doi.org/10.1007/978-3-319-04852-9_1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1017542132


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "State University of Campinas", 
              "id": "https://www.grid.ac/institutes/grid.411087.b", 
              "name": [
                "Institute of Computing, University of Campinas, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Faz-Hern\u00e1ndez", 
            "givenName": "Armando", 
            "id": "sg:person.010513555553.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010513555553.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Microsoft (United States)", 
              "id": "https://www.grid.ac/institutes/grid.419815.0", 
              "name": [
                "Microsoft Research, One Microsoft Way, Redmond, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Longa", 
            "givenName": "Patrick", 
            "id": "sg:person.0630152206.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630152206.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto Polit\u00e9cnico Nacional", 
              "id": "https://www.grid.ac/institutes/grid.418275.d", 
              "name": [
                "Computer Science Department, CINVESTAV-IPN, M\u00e9xico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "S\u00e1nchez", 
            "givenName": "Ana H.", 
            "id": "sg:person.015746601433.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015746601433.51"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-34961-4_43", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000679621", 
              "https://doi.org/10.1007/978-3-642-34961-4_43"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48405-1_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005179729", 
              "https://doi.org/10.1007/3-540-48405-1_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-02384-2_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014047662", 
              "https://doi.org/10.1007/978-3-642-02384-2_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-02384-2_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014047662", 
              "https://doi.org/10.1007/978-3-642-02384-2_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-68164-9_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016470627", 
              "https://doi.org/10.1007/978-3-540-68164-9_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.comnet.2005.01.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017306068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/0-387-23483-7_131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021349612", 
              "https://doi.org/10.1007/0-387-23483-7_131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-23951-9_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024554480", 
              "https://doi.org/10.1007/978-3-642-23951-9_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-23951-9_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024554480", 
              "https://doi.org/10.1007/978-3-642-23951-9_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36563-x_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024920631", 
              "https://doi.org/10.1007/3-540-36563-x_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36563-x_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024920631", 
              "https://doi.org/10.1007/3-540-36563-x_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0055747", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026945819", 
              "https://doi.org/10.1007/bfb0055747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45537-x_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028415015", 
              "https://doi.org/10.1007/3-540-45537-x_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-40349-1_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028547592", 
              "https://doi.org/10.1007/978-3-642-40349-1_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-20465-4_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028884731", 
              "https://doi.org/10.1007/978-3-642-20465-4_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-20465-4_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028884731", 
              "https://doi.org/10.1007/978-3-642-20465-4_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-42033-7_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029341570", 
              "https://doi.org/10.1007/978-3-642-42033-7_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15031-9_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029508457", 
              "https://doi.org/10.1007/978-3-642-15031-9_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15031-9_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029508457", 
              "https://doi.org/10.1007/978-3-642-15031-9_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48658-5_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029692519", 
              "https://doi.org/10.1007/3-540-48658-5_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48658-5_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029692519", 
              "https://doi.org/10.1007/3-540-48658-5_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-33027-8_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030639334", 
              "https://doi.org/10.1007/978-3-642-33027-8_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-38348-9_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031094507", 
              "https://doi.org/10.1007/978-3-642-38348-9_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00145-010-9065-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031386192", 
              "https://doi.org/10.1007/s00145-010-9065-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-89255-7_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031654257", 
              "https://doi.org/10.1007/978-3-540-89255-7_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-89255-7_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031654257", 
              "https://doi.org/10.1007/978-3-540-89255-7_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11605805_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032149789", 
              "https://doi.org/10.1007/11605805_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11605805_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032149789", 
              "https://doi.org/10.1007/11605805_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-40349-1_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033411073", 
              "https://doi.org/10.1007/978-3-642-40349-1_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-38980-1_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036018547", 
              "https://doi.org/10.1007/978-3-642-38980-1_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-38980-1_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036018547", 
              "https://doi.org/10.1007/978-3-642-38980-1_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-01001-9_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036081379", 
              "https://doi.org/10.1007/978-3-642-01001-9_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-01001-9_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036081379", 
              "https://doi.org/10.1007/978-3-642-01001-9_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-011-9558-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039727423", 
              "https://doi.org/10.1007/s10623-011-9558-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-31979-5_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042089030", 
              "https://doi.org/10.1007/978-3-540-31979-5_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-31979-5_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042089030", 
              "https://doi.org/10.1007/978-3-540-31979-5_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44647-8_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044250953", 
              "https://doi.org/10.1007/3-540-44647-8_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44647-8_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044250953", 
              "https://doi.org/10.1007/3-540-44647-8_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-42033-7_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047568295", 
              "https://doi.org/10.1007/978-3-642-42033-7_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-68697-5_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047972271", 
              "https://doi.org/10.1007/3-540-68697-5_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-68697-5_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047972271", 
              "https://doi.org/10.1007/3-540-68697-5_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45861-1_31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049064872", 
              "https://doi.org/10.1007/3-540-45861-1_31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45861-1_31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049064872", 
              "https://doi.org/10.1007/3-540-45861-1_31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11689522_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050014645", 
              "https://doi.org/10.1007/11689522_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11689522_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050014645", 
              "https://doi.org/10.1007/11689522_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/ip-cdt:20020235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056845284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/12.869328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061089187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tc.2009.61", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061534808"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014", 
        "datePublishedReg": "2014-01-01", 
        "description": "We propose efficient algorithms and formulas that improve the performance of side-channel protected scalar multiplication exploiting the Gallant-Lambert-Vanstone (CRYPTO 2001) and Galbraith-Lin-Scott (EUROCRYPT 2009) methods. Firstly, by adapting Feng et al.\u2019s recoding to the GLV setting, we derive new regular algorithms for variable-base scalar multiplication that offer protection against simple side-channel and timing attacks. Secondly, we propose an efficient technique that interleaves ARM-based and NEON-based multiprecision operations over an extension field, as typically found on GLS curves and pairing computations, to improve performance on modern ARM processors. Finally, we showcase the efficiency of the proposed techniques by implementing a state-of-the-art GLV-GLS curve in twisted Edwards form defined over \\(\\mathbb{F}_{p^2}\\), which supports a four dimensional decomposition of the scalar and runs in constant time, i.e., it is fully protected against timing attacks. For instance, using a precomputed table of only 512 bytes, we compute a variable-base scalar multiplication in 92,000 cycles on an Intel Ivy Bridge processor and in 244,000 cycles on an ARM Cortex-A15 processor. Our benchmark results and the proposed techniques contribute to the improvement of the state-of-the-art performance of elliptic curve computations. Most notably, our techniques allow us to reduce the cost of adding protection against timing attacks in the GLV-based variable-base scalar multiplication computation to below 10%.", 
        "editor": [
          {
            "familyName": "Benaloh", 
            "givenName": "Josh", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-04852-9_1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-319-04851-2", 
            "978-3-319-04852-9"
          ], 
          "name": "Topics in Cryptology \u2013 CT-RSA 2014", 
          "type": "Book"
        }, 
        "name": "Efficient and Secure Algorithms for GLV-Based Scalar Multiplication and Their Implementation on GLV-GLS Curves", 
        "pagination": "1-27", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-04852-9_1"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5393cb921b086f1cc58a847408cdf92290f023962525ce2f22e08bac8c53222d"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1017542132"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-04852-9_1", 
          "https://app.dimensions.ai/details/publication/pub.1017542132"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T01:26", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000584.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-04852-9_1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04852-9_1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04852-9_1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04852-9_1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04852-9_1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    213 TRIPLES      23 PREDICATES      60 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-04852-9_1 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N6f72c0bba36e4e78b3ae2f89212872be
    4 schema:citation sg:pub.10.1007/0-387-23483-7_131
    5 sg:pub.10.1007/11605805_1
    6 sg:pub.10.1007/11689522_2
    7 sg:pub.10.1007/3-540-36563-x_23
    8 sg:pub.10.1007/3-540-44647-8_11
    9 sg:pub.10.1007/3-540-45537-x_13
    10 sg:pub.10.1007/3-540-45861-1_31
    11 sg:pub.10.1007/3-540-48405-1_25
    12 sg:pub.10.1007/3-540-48658-5_11
    13 sg:pub.10.1007/3-540-68697-5_9
    14 sg:pub.10.1007/978-3-540-31979-5_8
    15 sg:pub.10.1007/978-3-540-68164-9_26
    16 sg:pub.10.1007/978-3-540-89255-7_20
    17 sg:pub.10.1007/978-3-642-01001-9_30
    18 sg:pub.10.1007/978-3-642-02384-2_21
    19 sg:pub.10.1007/978-3-642-15031-9_6
    20 sg:pub.10.1007/978-3-642-20465-4_5
    21 sg:pub.10.1007/978-3-642-23951-9_9
    22 sg:pub.10.1007/978-3-642-33027-8_19
    23 sg:pub.10.1007/978-3-642-34961-4_43
    24 sg:pub.10.1007/978-3-642-38348-9_12
    25 sg:pub.10.1007/978-3-642-38980-1_20
    26 sg:pub.10.1007/978-3-642-40349-1_18
    27 sg:pub.10.1007/978-3-642-40349-1_19
    28 sg:pub.10.1007/978-3-642-42033-7_4
    29 sg:pub.10.1007/978-3-642-42033-7_5
    30 sg:pub.10.1007/bfb0055747
    31 sg:pub.10.1007/s00145-010-9065-y
    32 sg:pub.10.1007/s10623-011-9558-1
    33 https://doi.org/10.1016/j.comnet.2005.01.010
    34 https://doi.org/10.1049/ip-cdt:20020235
    35 https://doi.org/10.1109/12.869328
    36 https://doi.org/10.1109/tc.2009.61
    37 schema:datePublished 2014
    38 schema:datePublishedReg 2014-01-01
    39 schema:description We propose efficient algorithms and formulas that improve the performance of side-channel protected scalar multiplication exploiting the Gallant-Lambert-Vanstone (CRYPTO 2001) and Galbraith-Lin-Scott (EUROCRYPT 2009) methods. Firstly, by adapting Feng et al.’s recoding to the GLV setting, we derive new regular algorithms for variable-base scalar multiplication that offer protection against simple side-channel and timing attacks. Secondly, we propose an efficient technique that interleaves ARM-based and NEON-based multiprecision operations over an extension field, as typically found on GLS curves and pairing computations, to improve performance on modern ARM processors. Finally, we showcase the efficiency of the proposed techniques by implementing a state-of-the-art GLV-GLS curve in twisted Edwards form defined over \(\mathbb{F}_{p^2}\), which supports a four dimensional decomposition of the scalar and runs in constant time, i.e., it is fully protected against timing attacks. For instance, using a precomputed table of only 512 bytes, we compute a variable-base scalar multiplication in 92,000 cycles on an Intel Ivy Bridge processor and in 244,000 cycles on an ARM Cortex-A15 processor. Our benchmark results and the proposed techniques contribute to the improvement of the state-of-the-art performance of elliptic curve computations. Most notably, our techniques allow us to reduce the cost of adding protection against timing attacks in the GLV-based variable-base scalar multiplication computation to below 10%.
    40 schema:editor Nd2e3fbbe21854561ad755f2aba18294c
    41 schema:genre chapter
    42 schema:inLanguage en
    43 schema:isAccessibleForFree true
    44 schema:isPartOf N662f3213150341e3a89b200ce1632ed8
    45 schema:name Efficient and Secure Algorithms for GLV-Based Scalar Multiplication and Their Implementation on GLV-GLS Curves
    46 schema:pagination 1-27
    47 schema:productId N357e6fbf0cf34fcdb122a6ff947be10d
    48 Ne9ea10c3f0634488a65e94b007905132
    49 Nffddbab0ed594b50be037da53a79dc0a
    50 schema:publisher N7e27f7f9e52846f3adb7403dec7ddd18
    51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017542132
    52 https://doi.org/10.1007/978-3-319-04852-9_1
    53 schema:sdDatePublished 2019-04-16T01:26
    54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    55 schema:sdPublisher N95a6926294da401dab74512763d6ea86
    56 schema:url http://link.springer.com/10.1007/978-3-319-04852-9_1
    57 sgo:license sg:explorer/license/
    58 sgo:sdDataset chapters
    59 rdf:type schema:Chapter
    60 N357e6fbf0cf34fcdb122a6ff947be10d schema:name dimensions_id
    61 schema:value pub.1017542132
    62 rdf:type schema:PropertyValue
    63 N662f3213150341e3a89b200ce1632ed8 schema:isbn 978-3-319-04851-2
    64 978-3-319-04852-9
    65 schema:name Topics in Cryptology – CT-RSA 2014
    66 rdf:type schema:Book
    67 N6f72c0bba36e4e78b3ae2f89212872be rdf:first sg:person.010513555553.93
    68 rdf:rest Nec7977d8090e406ba2d2ee1ac797fac5
    69 N7e27f7f9e52846f3adb7403dec7ddd18 schema:location Cham
    70 schema:name Springer International Publishing
    71 rdf:type schema:Organisation
    72 N95a6926294da401dab74512763d6ea86 schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 Nbc212931d4174798a60138a9e98d3da4 schema:familyName Benaloh
    75 schema:givenName Josh
    76 rdf:type schema:Person
    77 Nd2e3fbbe21854561ad755f2aba18294c rdf:first Nbc212931d4174798a60138a9e98d3da4
    78 rdf:rest rdf:nil
    79 Ne0e2b5d295904f7aba75066be621118a rdf:first sg:person.015746601433.51
    80 rdf:rest rdf:nil
    81 Ne9ea10c3f0634488a65e94b007905132 schema:name readcube_id
    82 schema:value 5393cb921b086f1cc58a847408cdf92290f023962525ce2f22e08bac8c53222d
    83 rdf:type schema:PropertyValue
    84 Nec7977d8090e406ba2d2ee1ac797fac5 rdf:first sg:person.0630152206.20
    85 rdf:rest Ne0e2b5d295904f7aba75066be621118a
    86 Nffddbab0ed594b50be037da53a79dc0a schema:name doi
    87 schema:value 10.1007/978-3-319-04852-9_1
    88 rdf:type schema:PropertyValue
    89 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Information and Computing Sciences
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Artificial Intelligence and Image Processing
    94 rdf:type schema:DefinedTerm
    95 sg:person.010513555553.93 schema:affiliation https://www.grid.ac/institutes/grid.411087.b
    96 schema:familyName Faz-Hernández
    97 schema:givenName Armando
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010513555553.93
    99 rdf:type schema:Person
    100 sg:person.015746601433.51 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
    101 schema:familyName Sánchez
    102 schema:givenName Ana H.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015746601433.51
    104 rdf:type schema:Person
    105 sg:person.0630152206.20 schema:affiliation https://www.grid.ac/institutes/grid.419815.0
    106 schema:familyName Longa
    107 schema:givenName Patrick
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630152206.20
    109 rdf:type schema:Person
    110 sg:pub.10.1007/0-387-23483-7_131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021349612
    111 https://doi.org/10.1007/0-387-23483-7_131
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/11605805_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032149789
    114 https://doi.org/10.1007/11605805_1
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/11689522_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050014645
    117 https://doi.org/10.1007/11689522_2
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/3-540-36563-x_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024920631
    120 https://doi.org/10.1007/3-540-36563-x_23
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/3-540-44647-8_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044250953
    123 https://doi.org/10.1007/3-540-44647-8_11
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/3-540-45537-x_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028415015
    126 https://doi.org/10.1007/3-540-45537-x_13
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/3-540-45861-1_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049064872
    129 https://doi.org/10.1007/3-540-45861-1_31
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/3-540-48405-1_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005179729
    132 https://doi.org/10.1007/3-540-48405-1_25
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/3-540-48658-5_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029692519
    135 https://doi.org/10.1007/3-540-48658-5_11
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/3-540-68697-5_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047972271
    138 https://doi.org/10.1007/3-540-68697-5_9
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/978-3-540-31979-5_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042089030
    141 https://doi.org/10.1007/978-3-540-31979-5_8
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/978-3-540-68164-9_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016470627
    144 https://doi.org/10.1007/978-3-540-68164-9_26
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/978-3-540-89255-7_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031654257
    147 https://doi.org/10.1007/978-3-540-89255-7_20
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/978-3-642-01001-9_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036081379
    150 https://doi.org/10.1007/978-3-642-01001-9_30
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/978-3-642-02384-2_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014047662
    153 https://doi.org/10.1007/978-3-642-02384-2_21
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/978-3-642-15031-9_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029508457
    156 https://doi.org/10.1007/978-3-642-15031-9_6
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/978-3-642-20465-4_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028884731
    159 https://doi.org/10.1007/978-3-642-20465-4_5
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/978-3-642-23951-9_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024554480
    162 https://doi.org/10.1007/978-3-642-23951-9_9
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/978-3-642-33027-8_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030639334
    165 https://doi.org/10.1007/978-3-642-33027-8_19
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/978-3-642-34961-4_43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000679621
    168 https://doi.org/10.1007/978-3-642-34961-4_43
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/978-3-642-38348-9_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031094507
    171 https://doi.org/10.1007/978-3-642-38348-9_12
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/978-3-642-38980-1_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036018547
    174 https://doi.org/10.1007/978-3-642-38980-1_20
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/978-3-642-40349-1_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028547592
    177 https://doi.org/10.1007/978-3-642-40349-1_18
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/978-3-642-40349-1_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033411073
    180 https://doi.org/10.1007/978-3-642-40349-1_19
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/978-3-642-42033-7_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047568295
    183 https://doi.org/10.1007/978-3-642-42033-7_4
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/978-3-642-42033-7_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029341570
    186 https://doi.org/10.1007/978-3-642-42033-7_5
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/bfb0055747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026945819
    189 https://doi.org/10.1007/bfb0055747
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s00145-010-9065-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1031386192
    192 https://doi.org/10.1007/s00145-010-9065-y
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s10623-011-9558-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039727423
    195 https://doi.org/10.1007/s10623-011-9558-1
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/j.comnet.2005.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017306068
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1049/ip-cdt:20020235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056845284
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1109/12.869328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061089187
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1109/tc.2009.61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061534808
    204 rdf:type schema:CreativeWork
    205 https://www.grid.ac/institutes/grid.411087.b schema:alternateName State University of Campinas
    206 schema:name Institute of Computing, University of Campinas, Brazil
    207 rdf:type schema:Organization
    208 https://www.grid.ac/institutes/grid.418275.d schema:alternateName Instituto Politécnico Nacional
    209 schema:name Computer Science Department, CINVESTAV-IPN, México
    210 rdf:type schema:Organization
    211 https://www.grid.ac/institutes/grid.419815.0 schema:alternateName Microsoft (United States)
    212 schema:name Microsoft Research, One Microsoft Way, Redmond, USA
    213 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...