Ontology type: schema:Chapter Open Access: True
2014
AUTHORSArmando Faz-Hernández , Patrick Longa , Ana H. Sánchez
ABSTRACTWe propose efficient algorithms and formulas that improve the performance of side-channel protected scalar multiplication exploiting the Gallant-Lambert-Vanstone (CRYPTO 2001) and Galbraith-Lin-Scott (EUROCRYPT 2009) methods. Firstly, by adapting Feng et al.’s recoding to the GLV setting, we derive new regular algorithms for variable-base scalar multiplication that offer protection against simple side-channel and timing attacks. Secondly, we propose an efficient technique that interleaves ARM-based and NEON-based multiprecision operations over an extension field, as typically found on GLS curves and pairing computations, to improve performance on modern ARM processors. Finally, we showcase the efficiency of the proposed techniques by implementing a state-of-the-art GLV-GLS curve in twisted Edwards form defined over \(\mathbb{F}_{p^2}\), which supports a four dimensional decomposition of the scalar and runs in constant time, i.e., it is fully protected against timing attacks. For instance, using a precomputed table of only 512 bytes, we compute a variable-base scalar multiplication in 92,000 cycles on an Intel Ivy Bridge processor and in 244,000 cycles on an ARM Cortex-A15 processor. Our benchmark results and the proposed techniques contribute to the improvement of the state-of-the-art performance of elliptic curve computations. Most notably, our techniques allow us to reduce the cost of adding protection against timing attacks in the GLV-based variable-base scalar multiplication computation to below 10%. More... »
PAGES1-27
Topics in Cryptology – CT-RSA 2014
ISBN
978-3-319-04851-2
978-3-319-04852-9
http://scigraph.springernature.com/pub.10.1007/978-3-319-04852-9_1
DOIhttp://dx.doi.org/10.1007/978-3-319-04852-9_1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1017542132
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "State University of Campinas",
"id": "https://www.grid.ac/institutes/grid.411087.b",
"name": [
"Institute of Computing, University of Campinas, Brazil"
],
"type": "Organization"
},
"familyName": "Faz-Hern\u00e1ndez",
"givenName": "Armando",
"id": "sg:person.010513555553.93",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010513555553.93"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Microsoft (United States)",
"id": "https://www.grid.ac/institutes/grid.419815.0",
"name": [
"Microsoft Research, One Microsoft Way, Redmond, USA"
],
"type": "Organization"
},
"familyName": "Longa",
"givenName": "Patrick",
"id": "sg:person.0630152206.20",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630152206.20"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Instituto Polit\u00e9cnico Nacional",
"id": "https://www.grid.ac/institutes/grid.418275.d",
"name": [
"Computer Science Department, CINVESTAV-IPN, M\u00e9xico"
],
"type": "Organization"
},
"familyName": "S\u00e1nchez",
"givenName": "Ana H.",
"id": "sg:person.015746601433.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015746601433.51"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-642-34961-4_43",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000679621",
"https://doi.org/10.1007/978-3-642-34961-4_43"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-48405-1_25",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005179729",
"https://doi.org/10.1007/3-540-48405-1_25"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-02384-2_21",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014047662",
"https://doi.org/10.1007/978-3-642-02384-2_21"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-02384-2_21",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014047662",
"https://doi.org/10.1007/978-3-642-02384-2_21"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-68164-9_26",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016470627",
"https://doi.org/10.1007/978-3-540-68164-9_26"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.comnet.2005.01.010",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017306068"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/0-387-23483-7_131",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021349612",
"https://doi.org/10.1007/0-387-23483-7_131"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-23951-9_9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024554480",
"https://doi.org/10.1007/978-3-642-23951-9_9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-23951-9_9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024554480",
"https://doi.org/10.1007/978-3-642-23951-9_9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-36563-x_23",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024920631",
"https://doi.org/10.1007/3-540-36563-x_23"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-36563-x_23",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024920631",
"https://doi.org/10.1007/3-540-36563-x_23"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0055747",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026945819",
"https://doi.org/10.1007/bfb0055747"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-45537-x_13",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028415015",
"https://doi.org/10.1007/3-540-45537-x_13"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-40349-1_18",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028547592",
"https://doi.org/10.1007/978-3-642-40349-1_18"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-20465-4_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028884731",
"https://doi.org/10.1007/978-3-642-20465-4_5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-20465-4_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028884731",
"https://doi.org/10.1007/978-3-642-20465-4_5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-42033-7_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029341570",
"https://doi.org/10.1007/978-3-642-42033-7_5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-15031-9_6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029508457",
"https://doi.org/10.1007/978-3-642-15031-9_6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-15031-9_6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029508457",
"https://doi.org/10.1007/978-3-642-15031-9_6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-48658-5_11",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029692519",
"https://doi.org/10.1007/3-540-48658-5_11"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-48658-5_11",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029692519",
"https://doi.org/10.1007/3-540-48658-5_11"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-33027-8_19",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030639334",
"https://doi.org/10.1007/978-3-642-33027-8_19"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-38348-9_12",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031094507",
"https://doi.org/10.1007/978-3-642-38348-9_12"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00145-010-9065-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031386192",
"https://doi.org/10.1007/s00145-010-9065-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-89255-7_20",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031654257",
"https://doi.org/10.1007/978-3-540-89255-7_20"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-89255-7_20",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031654257",
"https://doi.org/10.1007/978-3-540-89255-7_20"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11605805_1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032149789",
"https://doi.org/10.1007/11605805_1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11605805_1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032149789",
"https://doi.org/10.1007/11605805_1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-40349-1_19",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033411073",
"https://doi.org/10.1007/978-3-642-40349-1_19"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-38980-1_20",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036018547",
"https://doi.org/10.1007/978-3-642-38980-1_20"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-38980-1_20",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036018547",
"https://doi.org/10.1007/978-3-642-38980-1_20"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-01001-9_30",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036081379",
"https://doi.org/10.1007/978-3-642-01001-9_30"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-01001-9_30",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036081379",
"https://doi.org/10.1007/978-3-642-01001-9_30"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10623-011-9558-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039727423",
"https://doi.org/10.1007/s10623-011-9558-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-31979-5_8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042089030",
"https://doi.org/10.1007/978-3-540-31979-5_8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-31979-5_8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042089030",
"https://doi.org/10.1007/978-3-540-31979-5_8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-44647-8_11",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044250953",
"https://doi.org/10.1007/3-540-44647-8_11"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-44647-8_11",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044250953",
"https://doi.org/10.1007/3-540-44647-8_11"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-42033-7_4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047568295",
"https://doi.org/10.1007/978-3-642-42033-7_4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-68697-5_9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047972271",
"https://doi.org/10.1007/3-540-68697-5_9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-68697-5_9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047972271",
"https://doi.org/10.1007/3-540-68697-5_9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-45861-1_31",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049064872",
"https://doi.org/10.1007/3-540-45861-1_31"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-45861-1_31",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049064872",
"https://doi.org/10.1007/3-540-45861-1_31"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11689522_2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050014645",
"https://doi.org/10.1007/11689522_2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11689522_2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050014645",
"https://doi.org/10.1007/11689522_2"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1049/ip-cdt:20020235",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1056845284"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/12.869328",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061089187"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tc.2009.61",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061534808"
],
"type": "CreativeWork"
}
],
"datePublished": "2014",
"datePublishedReg": "2014-01-01",
"description": "We propose efficient algorithms and formulas that improve the performance of side-channel protected scalar multiplication exploiting the Gallant-Lambert-Vanstone (CRYPTO 2001) and Galbraith-Lin-Scott (EUROCRYPT 2009) methods. Firstly, by adapting Feng et al.\u2019s recoding to the GLV setting, we derive new regular algorithms for variable-base scalar multiplication that offer protection against simple side-channel and timing attacks. Secondly, we propose an efficient technique that interleaves ARM-based and NEON-based multiprecision operations over an extension field, as typically found on GLS curves and pairing computations, to improve performance on modern ARM processors. Finally, we showcase the efficiency of the proposed techniques by implementing a state-of-the-art GLV-GLS curve in twisted Edwards form defined over \\(\\mathbb{F}_{p^2}\\), which supports a four dimensional decomposition of the scalar and runs in constant time, i.e., it is fully protected against timing attacks. For instance, using a precomputed table of only 512 bytes, we compute a variable-base scalar multiplication in 92,000 cycles on an Intel Ivy Bridge processor and in 244,000 cycles on an ARM Cortex-A15 processor. Our benchmark results and the proposed techniques contribute to the improvement of the state-of-the-art performance of elliptic curve computations. Most notably, our techniques allow us to reduce the cost of adding protection against timing attacks in the GLV-based variable-base scalar multiplication computation to below 10%.",
"editor": [
{
"familyName": "Benaloh",
"givenName": "Josh",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-04852-9_1",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-319-04851-2",
"978-3-319-04852-9"
],
"name": "Topics in Cryptology \u2013 CT-RSA 2014",
"type": "Book"
},
"name": "Efficient and Secure Algorithms for GLV-Based Scalar Multiplication and Their Implementation on GLV-GLS Curves",
"pagination": "1-27",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-04852-9_1"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"5393cb921b086f1cc58a847408cdf92290f023962525ce2f22e08bac8c53222d"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1017542132"
]
}
],
"publisher": {
"location": "Cham",
"name": "Springer International Publishing",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-04852-9_1",
"https://app.dimensions.ai/details/publication/pub.1017542132"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T01:26",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000584.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-319-04852-9_1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04852-9_1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04852-9_1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04852-9_1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04852-9_1'
This table displays all metadata directly associated to this object as RDF triples.
213 TRIPLES
23 PREDICATES
60 URIs
20 LITERALS
8 BLANK NODES