Calculation of Discrepancy Measures and Applications View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Carola Doerr , Michael Gnewuch , Magnus Wahlström

ABSTRACT

In this book chapter we survey known approaches and algorithms to compute discrepancy measures of point sets. After providing an introduction which puts the calculation of discrepancy measures in a more general context, we focus on the geometric discrepancy measures for which computation algorithms have been designed. In particular, we explain methods to determine L 2-discrepancies and approaches to tackle the inherently difficult problem to calculate the star discrepancy of given sample sets. We also discuss in more detail three applications of algorithms to approximate discrepancies. More... »

PAGES

621-678

Book

TITLE

A Panorama of Discrepancy Theory

ISBN

978-3-319-04695-2
978-3-319-04696-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-04696-9_10

DOI

http://dx.doi.org/10.1007/978-3-319-04696-9_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041484033


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire d'informatique de Paris 6", 
          "id": "https://www.grid.ac/institutes/grid.462751.3", 
          "name": [
            "Universit\u00e9 Pierre et Marie Curie - Paris 6, LIP6, \u00e9quipe RO, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doerr", 
        "givenName": "Carola", 
        "id": "sg:person.010360414373.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010360414373.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kiel University", 
          "id": "https://www.grid.ac/institutes/grid.9764.c", 
          "name": [
            "Mathematisches Seminar, Kiel University, Kiel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gnewuch", 
        "givenName": "Michael", 
        "id": "sg:person.015256570322.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015256570322.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Informatics", 
          "id": "https://www.grid.ac/institutes/grid.419528.3", 
          "name": [
            "Max-Planck-Institut f\u00fcr Informatik, Saarbr\u00fccken, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wahlstr\u00f6m", 
        "givenName": "Magnus", 
        "id": "sg:person.011356100511.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356100511.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jco.2003.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006887429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2006.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027236152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2005.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030579308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2010.01.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033340426"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "In this book chapter we survey known approaches and algorithms to compute discrepancy measures of point sets. After providing an introduction which puts the calculation of discrepancy measures in a more general context, we focus on the geometric discrepancy measures for which computation algorithms have been designed. In particular, we explain methods to determine L 2-discrepancies and approaches to tackle the inherently difficult problem to calculate the star discrepancy of given sample sets. We also discuss in more detail three applications of algorithms to approximate discrepancies.", 
    "editor": [
      {
        "familyName": "Chen", 
        "givenName": "William", 
        "type": "Person"
      }, 
      {
        "familyName": "Srivastav", 
        "givenName": "Anand", 
        "type": "Person"
      }, 
      {
        "familyName": "Travaglini", 
        "givenName": "Giancarlo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-04696-9_10", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-04695-2", 
        "978-3-319-04696-9"
      ], 
      "name": "A Panorama of Discrepancy Theory", 
      "type": "Book"
    }, 
    "name": "Calculation of Discrepancy Measures and Applications", 
    "pagination": "621-678", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-04696-9_10"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c59e56487f155c6b02abe96944776c45425dc8c95b00fcbf9c44a3331e8e2667"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041484033"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-04696-9_10", 
      "https://app.dimensions.ai/details/publication/pub.1041484033"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000269.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-04696-9_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04696-9_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04696-9_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04696-9_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04696-9_10'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-04696-9_10 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N83a414acfdee4991bc80a4ba0a81fe95
4 schema:citation https://doi.org/10.1016/j.cam.2005.11.005
5 https://doi.org/10.1016/j.cam.2006.09.004
6 https://doi.org/10.1016/j.csda.2010.01.032
7 https://doi.org/10.1016/j.jco.2003.06.002
8 schema:datePublished 2014
9 schema:datePublishedReg 2014-01-01
10 schema:description In this book chapter we survey known approaches and algorithms to compute discrepancy measures of point sets. After providing an introduction which puts the calculation of discrepancy measures in a more general context, we focus on the geometric discrepancy measures for which computation algorithms have been designed. In particular, we explain methods to determine L 2-discrepancies and approaches to tackle the inherently difficult problem to calculate the star discrepancy of given sample sets. We also discuss in more detail three applications of algorithms to approximate discrepancies.
11 schema:editor N5fa37417f45a4abeb0190325d1ccc025
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N31bbfa18922c477d91f17cda476ac772
16 schema:name Calculation of Discrepancy Measures and Applications
17 schema:pagination 621-678
18 schema:productId N8edc87431651419ea64f7395dd417899
19 N9f656e502b514e0c82e9b2d391fa6ec5
20 Na8c475ce0cd44de7b64a12cbf01a1621
21 schema:publisher N402cabf47f774c49941bf59fdb47026c
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041484033
23 https://doi.org/10.1007/978-3-319-04696-9_10
24 schema:sdDatePublished 2019-04-15T22:57
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Nb2d2732608d34573ba7ba4dacf8a487e
27 schema:url http://link.springer.com/10.1007/978-3-319-04696-9_10
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N31bbfa18922c477d91f17cda476ac772 schema:isbn 978-3-319-04695-2
32 978-3-319-04696-9
33 schema:name A Panorama of Discrepancy Theory
34 rdf:type schema:Book
35 N402cabf47f774c49941bf59fdb47026c schema:location Cham
36 schema:name Springer International Publishing
37 rdf:type schema:Organisation
38 N57303de288f1423a8cbb44aaecfcab1b rdf:first sg:person.011356100511.58
39 rdf:rest rdf:nil
40 N5fa37417f45a4abeb0190325d1ccc025 rdf:first Ndd6c87e130ac4451a2d4d367dad5b553
41 rdf:rest Ncf0aa7b8230b4b778781f5482654b420
42 N71c2da5cf84e497fa5463412ff9d7d7e schema:familyName Srivastav
43 schema:givenName Anand
44 rdf:type schema:Person
45 N7ead86956b084f2da630cec524d7115e rdf:first sg:person.015256570322.48
46 rdf:rest N57303de288f1423a8cbb44aaecfcab1b
47 N83a414acfdee4991bc80a4ba0a81fe95 rdf:first sg:person.010360414373.45
48 rdf:rest N7ead86956b084f2da630cec524d7115e
49 N8edc87431651419ea64f7395dd417899 schema:name doi
50 schema:value 10.1007/978-3-319-04696-9_10
51 rdf:type schema:PropertyValue
52 N9bb6f9548aac4092bc8fbfefe3e69873 schema:familyName Travaglini
53 schema:givenName Giancarlo
54 rdf:type schema:Person
55 N9f656e502b514e0c82e9b2d391fa6ec5 schema:name readcube_id
56 schema:value c59e56487f155c6b02abe96944776c45425dc8c95b00fcbf9c44a3331e8e2667
57 rdf:type schema:PropertyValue
58 Na8c475ce0cd44de7b64a12cbf01a1621 schema:name dimensions_id
59 schema:value pub.1041484033
60 rdf:type schema:PropertyValue
61 Nb2d2732608d34573ba7ba4dacf8a487e schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nc9a17dd72d1c4e4ea3d04c19e8f0f835 rdf:first N9bb6f9548aac4092bc8fbfefe3e69873
64 rdf:rest rdf:nil
65 Ncf0aa7b8230b4b778781f5482654b420 rdf:first N71c2da5cf84e497fa5463412ff9d7d7e
66 rdf:rest Nc9a17dd72d1c4e4ea3d04c19e8f0f835
67 Ndd6c87e130ac4451a2d4d367dad5b553 schema:familyName Chen
68 schema:givenName William
69 rdf:type schema:Person
70 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
71 schema:name Information and Computing Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
74 schema:name Computation Theory and Mathematics
75 rdf:type schema:DefinedTerm
76 sg:person.010360414373.45 schema:affiliation https://www.grid.ac/institutes/grid.462751.3
77 schema:familyName Doerr
78 schema:givenName Carola
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010360414373.45
80 rdf:type schema:Person
81 sg:person.011356100511.58 schema:affiliation https://www.grid.ac/institutes/grid.419528.3
82 schema:familyName Wahlström
83 schema:givenName Magnus
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356100511.58
85 rdf:type schema:Person
86 sg:person.015256570322.48 schema:affiliation https://www.grid.ac/institutes/grid.9764.c
87 schema:familyName Gnewuch
88 schema:givenName Michael
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015256570322.48
90 rdf:type schema:Person
91 https://doi.org/10.1016/j.cam.2005.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030579308
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.cam.2006.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027236152
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.csda.2010.01.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033340426
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.jco.2003.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006887429
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.419528.3 schema:alternateName Max Planck Institute for Informatics
100 schema:name Max-Planck-Institut für Informatik, Saarbrücken, Germany
101 rdf:type schema:Organization
102 https://www.grid.ac/institutes/grid.462751.3 schema:alternateName Laboratoire d'informatique de Paris 6
103 schema:name Université Pierre et Marie Curie - Paris 6, LIP6, équipe RO, Paris, France
104 rdf:type schema:Organization
105 https://www.grid.ac/institutes/grid.9764.c schema:alternateName Kiel University
106 schema:name Mathematisches Seminar, Kiel University, Kiel, Germany
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...