On Dilworth k Graphs and Their Pairwise Compatibility View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Tiziana Calamoneri , Rossella Petreschi

ABSTRACT

The Dilworth number of a graph is the size of the largest subset of its nodes in which the close neighborhood of no node contains the neighborhood of another one. In this paper we give a new characterization of Dilworth k graphs, for each value of k, exactly defining their structure. Moreover, we put these graphs in relation with pairwise compatibility graphs (PCGs), i.e. graphs on n nodes that can be generated from an edge-weighted tree T that has n leaves, each representing a different node of the graph; two nodes are adjacent in the graph if and only if the weighted distance in the corresponding T is between two given non-negative real numbers, m and M. When either m or M are not used to eliminate edges from G, the two subclasses leaf power and minimum leaf power graphs (LPGs and mLPGs, respectively) are defined. Here we prove that graphs that are either LPGs or mLPGs of trees obtained connecting the centers of k stars with a path are Dilworth k graphs. We show that the opposite is true when k = 1,2, but not when k ≥ 3. Finally, we show that the relations we proved between Dilworth k graphs and chains of k stars hold only for LPGs and mLPGs, but not for PCGs. More... »

PAGES

213-224

References to SciGraph publications

  • 2003-11. Recognition Algorithms for Orders of Small Width and Graphs of Small Dilworth Number in ORDER
  • 2008. Ptolemaic Graphs and Interval Graphs Are Leaf Powers in LATIN 2008: THEORETICAL INFORMATICS
  • 2012. On Relaxing the Constraints in Pairwise Compatibility Graphs in WALCOM: ALGORITHMS AND COMPUTATION
  • 2002-01-29. Phylogenetic k-Root and Steiner k-Root in ALGORITHMS AND COMPUTATION
  • 2009-05. Pairwise compatibility graphs in JOURNAL OF APPLIED MATHEMATICS AND COMPUTING
  • 2003. Efficient Generation of Uniform Samples from Phylogenetic Trees in ALGORITHMS IN BIOINFORMATICS
  • Book

    TITLE

    Algorithms and Computation

    ISBN

    978-3-319-04656-3
    978-3-319-04657-0

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-04657-0_21

    DOI

    http://dx.doi.org/10.1007/978-3-319-04657-0_21

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038778637


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sapienza University of Rome", 
              "id": "https://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "Department of Computer Science, \u201cSapienza\u201d University of Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Calamoneri", 
            "givenName": "Tiziana", 
            "id": "sg:person.013577775161.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013577775161.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sapienza University of Rome", 
              "id": "https://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "Department of Computer Science, \u201cSapienza\u201d University of Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Petreschi", 
            "givenName": "Rossella", 
            "id": "sg:person.011402427702.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011402427702.78"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-540-39763-2_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001248165", 
              "https://doi.org/10.1007/978-3-540-39763-2_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-39763-2_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001248165", 
              "https://doi.org/10.1007/978-3-540-39763-2_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-28076-4_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002922678", 
              "https://doi.org/10.1007/978-3-642-28076-4_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-78773-0_42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017112248", 
              "https://doi.org/10.1007/978-3-540-78773-0_42"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-78773-0_42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017112248", 
              "https://doi.org/10.1007/978-3-540-78773-0_42"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tcs.2012.11.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017407327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.endm.2013.10.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023923426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-5060(08)70334-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028481950"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-40996-3_46", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028915527", 
              "https://doi.org/10.1007/3-540-40996-3_46"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-40996-3_46", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028915527", 
              "https://doi.org/10.1007/3-540-40996-3_46"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12190-008-0204-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028947261", 
              "https://doi.org/10.1007/s12190-008-0204-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jgt.3190090207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030236237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0012-365x(83)90064-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043176751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:orde.0000034609.99940.fb", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044491525", 
              "https://doi.org/10.1023/b:orde.0000034609.99940.fb"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-5060(08)70731-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046754752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0166-218x(90)90092-q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049270783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0012-365x(89)90200-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052838393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/comjnl/bxs087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059480409"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s1793830910000917", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063025166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s1793830913600021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063025318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1.9780898719796", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098557270"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014", 
        "datePublishedReg": "2014-01-01", 
        "description": "The Dilworth number of a graph is the size of the largest subset of its nodes in which the close neighborhood of no node contains the neighborhood of another one. In this paper we give a new characterization of Dilworth k graphs, for each value of k, exactly defining their structure. Moreover, we put these graphs in relation with pairwise compatibility graphs (PCGs), i.e. graphs on n nodes that can be generated from an edge-weighted tree T that has n leaves, each representing a different node of the graph; two nodes are adjacent in the graph if and only if the weighted distance in the corresponding T is between two given non-negative real numbers, m and M. When either m or M are not used to eliminate edges from G, the two subclasses leaf power and minimum leaf power graphs (LPGs and mLPGs, respectively) are defined. Here we prove that graphs that are either LPGs or mLPGs of trees obtained connecting the centers of k stars with a path are Dilworth k graphs. We show that the opposite is true when k\u2009=\u20091,2, but not when k\u2009\u2265\u20093. Finally, we show that the relations we proved between Dilworth k graphs and chains of k stars hold only for LPGs and mLPGs, but not for PCGs.", 
        "editor": [
          {
            "familyName": "Pal", 
            "givenName": "Sudebkumar Prasant", 
            "type": "Person"
          }, 
          {
            "familyName": "Sadakane", 
            "givenName": "Kunihiko", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-04657-0_21", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-04656-3", 
            "978-3-319-04657-0"
          ], 
          "name": "Algorithms and Computation", 
          "type": "Book"
        }, 
        "name": "On Dilworth k Graphs and Their Pairwise Compatibility", 
        "pagination": "213-224", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-04657-0_21"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b8b97f9e78fd3f52d75ba668d1690471d730b70112632edabc24d252587852a1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038778637"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-04657-0_21", 
          "https://app.dimensions.ai/details/publication/pub.1038778637"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T18:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000267.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-04657-0_21"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04657-0_21'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04657-0_21'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04657-0_21'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04657-0_21'


     

    This table displays all metadata directly associated to this object as RDF triples.

    137 TRIPLES      23 PREDICATES      45 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-04657-0_21 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N98909816b5704aaebd26c2789ed68181
    4 schema:citation sg:pub.10.1007/3-540-40996-3_46
    5 sg:pub.10.1007/978-3-540-39763-2_14
    6 sg:pub.10.1007/978-3-540-78773-0_42
    7 sg:pub.10.1007/978-3-642-28076-4_14
    8 sg:pub.10.1007/s12190-008-0204-7
    9 sg:pub.10.1023/b:orde.0000034609.99940.fb
    10 https://doi.org/10.1002/jgt.3190090207
    11 https://doi.org/10.1016/0012-365x(83)90064-x
    12 https://doi.org/10.1016/0012-365x(89)90200-8
    13 https://doi.org/10.1016/0166-218x(90)90092-q
    14 https://doi.org/10.1016/j.endm.2013.10.006
    15 https://doi.org/10.1016/j.tcs.2012.11.015
    16 https://doi.org/10.1016/s0167-5060(08)70334-0
    17 https://doi.org/10.1016/s0167-5060(08)70731-3
    18 https://doi.org/10.1093/comjnl/bxs087
    19 https://doi.org/10.1137/1.9780898719796
    20 https://doi.org/10.1142/s1793830910000917
    21 https://doi.org/10.1142/s1793830913600021
    22 schema:datePublished 2014
    23 schema:datePublishedReg 2014-01-01
    24 schema:description The Dilworth number of a graph is the size of the largest subset of its nodes in which the close neighborhood of no node contains the neighborhood of another one. In this paper we give a new characterization of Dilworth k graphs, for each value of k, exactly defining their structure. Moreover, we put these graphs in relation with pairwise compatibility graphs (PCGs), i.e. graphs on n nodes that can be generated from an edge-weighted tree T that has n leaves, each representing a different node of the graph; two nodes are adjacent in the graph if and only if the weighted distance in the corresponding T is between two given non-negative real numbers, m and M. When either m or M are not used to eliminate edges from G, the two subclasses leaf power and minimum leaf power graphs (LPGs and mLPGs, respectively) are defined. Here we prove that graphs that are either LPGs or mLPGs of trees obtained connecting the centers of k stars with a path are Dilworth k graphs. We show that the opposite is true when k = 1,2, but not when k ≥ 3. Finally, we show that the relations we proved between Dilworth k graphs and chains of k stars hold only for LPGs and mLPGs, but not for PCGs.
    25 schema:editor Ncc79bd039ad34de7b2a7f84b2d5521b0
    26 schema:genre chapter
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf N895d4ff66a8c4a0898724dc341267d83
    30 schema:name On Dilworth k Graphs and Their Pairwise Compatibility
    31 schema:pagination 213-224
    32 schema:productId N26e91b69e90f433789f14ae7090ba899
    33 Naeca586c47764723b72475026bc17bc8
    34 Neac53eae5323461b944a50862ea6f45c
    35 schema:publisher Nd9ebb97168e04ad09bdb140a633ef40b
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038778637
    37 https://doi.org/10.1007/978-3-319-04657-0_21
    38 schema:sdDatePublished 2019-04-15T18:12
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher N7a6b48aa517b464a8231b82489b69c18
    41 schema:url http://link.springer.com/10.1007/978-3-319-04657-0_21
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset chapters
    44 rdf:type schema:Chapter
    45 N26e91b69e90f433789f14ae7090ba899 schema:name dimensions_id
    46 schema:value pub.1038778637
    47 rdf:type schema:PropertyValue
    48 N5da146faef2e46d08d5ce092486796b5 rdf:first sg:person.011402427702.78
    49 rdf:rest rdf:nil
    50 N7a6b48aa517b464a8231b82489b69c18 schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 N895d4ff66a8c4a0898724dc341267d83 schema:isbn 978-3-319-04656-3
    53 978-3-319-04657-0
    54 schema:name Algorithms and Computation
    55 rdf:type schema:Book
    56 N98909816b5704aaebd26c2789ed68181 rdf:first sg:person.013577775161.22
    57 rdf:rest N5da146faef2e46d08d5ce092486796b5
    58 N9d502b08a5e04ba2869567f65cb95793 schema:familyName Sadakane
    59 schema:givenName Kunihiko
    60 rdf:type schema:Person
    61 Na80d194b15a24811abf4dc990a308aef schema:familyName Pal
    62 schema:givenName Sudebkumar Prasant
    63 rdf:type schema:Person
    64 Naeca586c47764723b72475026bc17bc8 schema:name doi
    65 schema:value 10.1007/978-3-319-04657-0_21
    66 rdf:type schema:PropertyValue
    67 Ncc79bd039ad34de7b2a7f84b2d5521b0 rdf:first Na80d194b15a24811abf4dc990a308aef
    68 rdf:rest Nfa9bd9435ced4bfcb3c43c9323923fbd
    69 Nd9ebb97168e04ad09bdb140a633ef40b schema:location Cham
    70 schema:name Springer International Publishing
    71 rdf:type schema:Organisation
    72 Neac53eae5323461b944a50862ea6f45c schema:name readcube_id
    73 schema:value b8b97f9e78fd3f52d75ba668d1690471d730b70112632edabc24d252587852a1
    74 rdf:type schema:PropertyValue
    75 Nfa9bd9435ced4bfcb3c43c9323923fbd rdf:first N9d502b08a5e04ba2869567f65cb95793
    76 rdf:rest rdf:nil
    77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Mathematical Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Pure Mathematics
    82 rdf:type schema:DefinedTerm
    83 sg:person.011402427702.78 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
    84 schema:familyName Petreschi
    85 schema:givenName Rossella
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011402427702.78
    87 rdf:type schema:Person
    88 sg:person.013577775161.22 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
    89 schema:familyName Calamoneri
    90 schema:givenName Tiziana
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013577775161.22
    92 rdf:type schema:Person
    93 sg:pub.10.1007/3-540-40996-3_46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028915527
    94 https://doi.org/10.1007/3-540-40996-3_46
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/978-3-540-39763-2_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001248165
    97 https://doi.org/10.1007/978-3-540-39763-2_14
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/978-3-540-78773-0_42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017112248
    100 https://doi.org/10.1007/978-3-540-78773-0_42
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/978-3-642-28076-4_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002922678
    103 https://doi.org/10.1007/978-3-642-28076-4_14
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/s12190-008-0204-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028947261
    106 https://doi.org/10.1007/s12190-008-0204-7
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1023/b:orde.0000034609.99940.fb schema:sameAs https://app.dimensions.ai/details/publication/pub.1044491525
    109 https://doi.org/10.1023/b:orde.0000034609.99940.fb
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1002/jgt.3190090207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030236237
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/0012-365x(83)90064-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043176751
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/0012-365x(89)90200-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052838393
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/0166-218x(90)90092-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1049270783
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/j.endm.2013.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023923426
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/j.tcs.2012.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017407327
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/s0167-5060(08)70334-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028481950
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/s0167-5060(08)70731-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046754752
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1093/comjnl/bxs087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059480409
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1137/1.9780898719796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098557270
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1142/s1793830910000917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063025166
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1142/s1793830913600021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063025318
    134 rdf:type schema:CreativeWork
    135 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
    136 schema:name Department of Computer Science, “Sapienza” University of Rome, Italy
    137 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...