A Mixture Model and Bootstrap Analysis to Assess Reproductive Allocation in Plants View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Caroline Brophy , D. Gibson , P. W. Wayne , J. Connolly

ABSTRACT

In this paper we discuss issues that arise in predicting from complex models for the analysis of reproductive allocation (RA) in plants. Presenting models of RA requires prediction on the original scale of the data and this can present challenges if transformations are used in modelling. It is also necessary to estimate without bias the mean level of RA as this may reflect a plant’s ability to contribute in the next generation. Several issues can arise in modelling RA including the occurrence of zero values and the clustering of plants in stands which can lead to the need for complex modelling. We present a two-component finite mixture model framework for the analysis of RA data with the first component a censored regression model on the logarithmic scale and the second component a logistic regression model. Both components contain random error terms to allow for potential correlation between grouped plants. We implement the framework using data from an experiment carried out to assess environmental factors on reproductive allocation. We detail the issues that arose in predicting from the model and present a bootstrap analysis to generate standard errors for the predictions from and to test for comparisons among predictions. More... »

PAGES

213-219

Book

TITLE

Statistical Modelling in Biostatistics and Bioinformatics

ISBN

978-3-319-04578-8
978-3-319-04579-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-04579-5_14

DOI

http://dx.doi.org/10.1007/978-3-319-04579-5_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047384940


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University College Dublin", 
          "id": "https://www.grid.ac/institutes/grid.7886.1", 
          "name": [
            "UCD School of Mathematical Sciences, Environmental & Ecological Modelling Group, University College Dublin, Belfield, Dublin 4, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brophy", 
        "givenName": "Caroline", 
        "id": "sg:person.01147752030.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147752030.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southern Illinois University System", 
          "id": "https://www.grid.ac/institutes/grid.411026.0", 
          "name": [
            "Department of Plant Biology, Center for Ecology, Southern Illinois University, Carbondale, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gibson", 
        "givenName": "D.", 
        "id": "sg:person.01213356022.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213356022.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Harvard Medical School, Osher Center for Integrative Medicine, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wayne", 
        "givenName": "P. W.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College Dublin", 
          "id": "https://www.grid.ac/institutes/grid.7886.1", 
          "name": [
            "UCD School of Mathematical Sciences, Environmental & Ecological Modelling Group, University College Dublin, Belfield, Dublin, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Connolly", 
        "givenName": "J.", 
        "id": "sg:person.01033523430.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033523430.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2007.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000689846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jpe/rtn024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013627301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177013815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021018321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2003.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021103966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2745.1999.00357.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048280011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1994.10476474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/285615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058595738"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "In this paper we discuss issues that arise in predicting from complex models for the analysis of reproductive allocation (RA) in plants. Presenting models of RA requires prediction on the original scale of the data and this can present challenges if transformations are used in modelling. It is also necessary to estimate without bias the mean level of RA as this may reflect a plant\u2019s ability to contribute in the next generation. Several issues can arise in modelling RA including the occurrence of zero values and the clustering of plants in stands which can lead to the need for complex modelling. We present a two-component finite mixture model framework for the analysis of RA data with the first component a censored regression model on the logarithmic scale and the second component a logistic regression model. Both components contain random error terms to allow for potential correlation between grouped plants. We implement the framework using data from an experiment carried out to assess environmental factors on reproductive allocation. We detail the issues that arose in predicting from the model and present a bootstrap analysis to generate standard errors for the predictions from and to test for comparisons among predictions.", 
    "editor": [
      {
        "familyName": "MacKenzie", 
        "givenName": "Gilbert", 
        "type": "Person"
      }, 
      {
        "familyName": "Peng", 
        "givenName": "Defen", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-04579-5_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-04578-8", 
        "978-3-319-04579-5"
      ], 
      "name": "Statistical Modelling in Biostatistics and Bioinformatics", 
      "type": "Book"
    }, 
    "name": "A Mixture Model and Bootstrap Analysis to Assess Reproductive Allocation in Plants", 
    "pagination": "213-219", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-04579-5_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e1ba0180c247871bc3669212aa232faf070ec31a12058d88463f741e52e01913"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047384940"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-04579-5_14", 
      "https://app.dimensions.ai/details/publication/pub.1047384940"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000272.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-04579-5_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04579-5_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04579-5_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04579-5_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04579-5_14'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-04579-5_14 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N548354506ddc40a49751ae8fbde51804
4 schema:citation https://doi.org/10.1016/j.advwatres.2003.12.002
5 https://doi.org/10.1016/j.ecolmodel.2007.04.008
6 https://doi.org/10.1046/j.1365-2745.1999.00357.x
7 https://doi.org/10.1080/01621459.1994.10476474
8 https://doi.org/10.1086/285615
9 https://doi.org/10.1093/jpe/rtn024
10 https://doi.org/10.1214/ss/1177013815
11 schema:datePublished 2014
12 schema:datePublishedReg 2014-01-01
13 schema:description In this paper we discuss issues that arise in predicting from complex models for the analysis of reproductive allocation (RA) in plants. Presenting models of RA requires prediction on the original scale of the data and this can present challenges if transformations are used in modelling. It is also necessary to estimate without bias the mean level of RA as this may reflect a plant’s ability to contribute in the next generation. Several issues can arise in modelling RA including the occurrence of zero values and the clustering of plants in stands which can lead to the need for complex modelling. We present a two-component finite mixture model framework for the analysis of RA data with the first component a censored regression model on the logarithmic scale and the second component a logistic regression model. Both components contain random error terms to allow for potential correlation between grouped plants. We implement the framework using data from an experiment carried out to assess environmental factors on reproductive allocation. We detail the issues that arose in predicting from the model and present a bootstrap analysis to generate standard errors for the predictions from and to test for comparisons among predictions.
14 schema:editor N1ece1fb2d3c04de1afac6cd763030147
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf Nb1f539ec1c6b4963931dce3c6e0d2539
19 schema:name A Mixture Model and Bootstrap Analysis to Assess Reproductive Allocation in Plants
20 schema:pagination 213-219
21 schema:productId N347ab77f72f84ad39fa7831bf5030e8e
22 N43b382facd024f76aec12512152a8729
23 N533817d54fda4db6b40bb387fa585036
24 schema:publisher Nf38fb6769fa64ddbbd04964c3380b25b
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047384940
26 https://doi.org/10.1007/978-3-319-04579-5_14
27 schema:sdDatePublished 2019-04-15T10:37
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N7a5261f4d0944665bc3462cbf0b1d4bc
30 schema:url http://link.springer.com/10.1007/978-3-319-04579-5_14
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N0e31e261b4aa4acaa0fef32ec09bd075 rdf:first sg:person.01033523430.39
35 rdf:rest rdf:nil
36 N1ece1fb2d3c04de1afac6cd763030147 rdf:first Ne35078ad13824eaba52b8193f016101e
37 rdf:rest N2bdee2cf629343739ce826935cfa4167
38 N2bdee2cf629343739ce826935cfa4167 rdf:first N879203057e3c4c35bbe38f7748381eaf
39 rdf:rest rdf:nil
40 N347ab77f72f84ad39fa7831bf5030e8e schema:name dimensions_id
41 schema:value pub.1047384940
42 rdf:type schema:PropertyValue
43 N420107dd4407499ca8b1f1281eeb892d schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
44 schema:familyName Wayne
45 schema:givenName P. W.
46 rdf:type schema:Person
47 N43b382facd024f76aec12512152a8729 schema:name readcube_id
48 schema:value e1ba0180c247871bc3669212aa232faf070ec31a12058d88463f741e52e01913
49 rdf:type schema:PropertyValue
50 N497e194296d74d8394a9b6f85a52da7a rdf:first sg:person.01213356022.22
51 rdf:rest Nc5f2b6774327473f9fe0730824207373
52 N533817d54fda4db6b40bb387fa585036 schema:name doi
53 schema:value 10.1007/978-3-319-04579-5_14
54 rdf:type schema:PropertyValue
55 N548354506ddc40a49751ae8fbde51804 rdf:first sg:person.01147752030.97
56 rdf:rest N497e194296d74d8394a9b6f85a52da7a
57 N7a5261f4d0944665bc3462cbf0b1d4bc schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N879203057e3c4c35bbe38f7748381eaf schema:familyName Peng
60 schema:givenName Defen
61 rdf:type schema:Person
62 Nb1f539ec1c6b4963931dce3c6e0d2539 schema:isbn 978-3-319-04578-8
63 978-3-319-04579-5
64 schema:name Statistical Modelling in Biostatistics and Bioinformatics
65 rdf:type schema:Book
66 Nc5f2b6774327473f9fe0730824207373 rdf:first N420107dd4407499ca8b1f1281eeb892d
67 rdf:rest N0e31e261b4aa4acaa0fef32ec09bd075
68 Ne35078ad13824eaba52b8193f016101e schema:familyName MacKenzie
69 schema:givenName Gilbert
70 rdf:type schema:Person
71 Nf38fb6769fa64ddbbd04964c3380b25b schema:location Cham
72 schema:name Springer International Publishing
73 rdf:type schema:Organisation
74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
75 schema:name Mathematical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
78 schema:name Statistics
79 rdf:type schema:DefinedTerm
80 sg:person.01033523430.39 schema:affiliation https://www.grid.ac/institutes/grid.7886.1
81 schema:familyName Connolly
82 schema:givenName J.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033523430.39
84 rdf:type schema:Person
85 sg:person.01147752030.97 schema:affiliation https://www.grid.ac/institutes/grid.7886.1
86 schema:familyName Brophy
87 schema:givenName Caroline
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147752030.97
89 rdf:type schema:Person
90 sg:person.01213356022.22 schema:affiliation https://www.grid.ac/institutes/grid.411026.0
91 schema:familyName Gibson
92 schema:givenName D.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213356022.22
94 rdf:type schema:Person
95 https://doi.org/10.1016/j.advwatres.2003.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021103966
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.ecolmodel.2007.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000689846
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1046/j.1365-2745.1999.00357.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048280011
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1080/01621459.1994.10476474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304608
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1086/285615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058595738
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1093/jpe/rtn024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013627301
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1214/ss/1177013815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021018321
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
110 schema:name Harvard Medical School, Osher Center for Integrative Medicine, Boston, MA, USA
111 rdf:type schema:Organization
112 https://www.grid.ac/institutes/grid.411026.0 schema:alternateName Southern Illinois University System
113 schema:name Department of Plant Biology, Center for Ecology, Southern Illinois University, Carbondale, IL, USA
114 rdf:type schema:Organization
115 https://www.grid.ac/institutes/grid.7886.1 schema:alternateName University College Dublin
116 schema:name UCD School of Mathematical Sciences, Environmental & Ecological Modelling Group, University College Dublin, Belfield, Dublin 4, Ireland
117 UCD School of Mathematical Sciences, Environmental & Ecological Modelling Group, University College Dublin, Belfield, Dublin, Ireland
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...