Relevance of Photolysis Frequencies Calculation Aspects to the Ozone Concentration Simulation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014-03-28

AUTHORS

Malte Uphoff , David Grawe , Ole Ross , K. Heinke Schlünzen

ABSTRACT

For the simulation of photochemically created pollutants like ozone it is essential to correctly consider reaction rates induced by short-wave radiation. In atmospheric chemistry transport models this is achieved by the use of either off- or online calculated photolysis frequencies. In this study the effect of different input parameters of a radiation model on the calculated photolysis frequencies have been investigated. In the second step an atmospheric chemistry transport model was used to assess the impact of changed photolysis frequencies on the simulation of ozone concentrations. The impact of changed radiation model input parameters on the calculated photolysis frequencies vary not only with regard to the changed parameter but also with regard to the to the species to be dissociated. Furthermore the impact of different sets of photolysis rates employed in a chemical transport simulation on the modelled concentrations is differed and likely to be less important than other aspects of the simulation like the resolution of the grid and the emissions used. Apart from major surface albedo changes (grass to snow) and extreme changes in total ozone column content for JO3 clouds are the dominating factor in modifying the photolysis frequencies especially as they feature a highly temporal and special variation. The results show that simulated maximum ozone concentrations in areas with clouds are reduced. More... »

PAGES

205-210

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-04379-1_33

DOI

http://dx.doi.org/10.1007/978-3-319-04379-1_33

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024146691


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0399", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Meteorological Institute, Klima Campus, University of Hamburg, Bundesstrasse 55, 20416, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Meteorological Institute, Klima Campus, University of Hamburg, Bundesstrasse 55, 20416, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uphoff", 
        "givenName": "Malte", 
        "id": "sg:person.012117246244.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012117246244.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Meteorological Institute, Klima Campus, University of Hamburg, Bundesstrasse 55, 20416, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Meteorological Institute, Klima Campus, University of Hamburg, Bundesstrasse 55, 20416, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grawe", 
        "givenName": "David", 
        "id": "sg:person.013356126023.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013356126023.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bundesanstalt f\u00fcr Geowissenschaften und Rohstoffe, Stillweg 2, 30655, Hannover, Germany", 
          "id": "http://www.grid.ac/institutes/grid.15606.34", 
          "name": [
            "Meteorological Institute, Klima Campus, University of Hamburg, Bundesstrasse 55, 20416, Hamburg, Germany", 
            "Bundesanstalt f\u00fcr Geowissenschaften und Rohstoffe, Stillweg 2, 30655, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ross", 
        "givenName": "Ole", 
        "id": "sg:person.013015255412.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015255412.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Meteorological Institute, Klima Campus, University of Hamburg, Bundesstrasse 55, 20416, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Meteorological Institute, Klima Campus, University of Hamburg, Bundesstrasse 55, 20416, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schl\u00fcnzen", 
        "givenName": "K. Heinke", 
        "id": "sg:person.012560545423.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012560545423.41"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014-03-28", 
    "datePublishedReg": "2014-03-28", 
    "description": "For the simulation of photochemically created pollutants like ozone it is essential to correctly consider reaction rates induced by short-wave radiation. In atmospheric chemistry transport models this is achieved by the use of either off- or online calculated photolysis frequencies. In this study the effect of different input parameters of a radiation model on the calculated photolysis frequencies have been investigated. In the second step an atmospheric chemistry transport model was used to assess the impact of changed photolysis frequencies on the simulation of ozone concentrations. The impact of changed radiation model input parameters on the calculated photolysis frequencies vary not only with regard to the changed parameter but also with regard to the to the species to be dissociated. Furthermore the impact of different sets of photolysis rates employed in a chemical transport simulation on the modelled concentrations is differed and likely to be less important than other aspects of the simulation like the resolution of the grid and the emissions used. Apart from major surface albedo changes (grass to snow) and extreme changes in total ozone column content for JO3 clouds are the dominating factor in modifying the photolysis frequencies especially as they feature a highly temporal and special variation. The results show that simulated maximum ozone concentrations in areas with clouds are reduced.", 
    "editor": [
      {
        "familyName": "Steyn", 
        "givenName": "Douw", 
        "type": "Person"
      }, 
      {
        "familyName": "Mathur", 
        "givenName": "Rohit", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-04379-1_33", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-04378-4", 
        "978-3-319-04379-1"
      ], 
      "name": "Air Pollution Modeling and its Application XXIII", 
      "type": "Book"
    }, 
    "keywords": [
      "atmospheric chemistry transport model", 
      "chemistry transport model", 
      "photolysis frequencies", 
      "chemical transport simulations", 
      "ozone concentrations", 
      "reaction rate", 
      "photolysis rates", 
      "calculation aspects", 
      "transport model", 
      "ozone column content", 
      "column content", 
      "maximum ozone concentration", 
      "concentration simulation", 
      "pollutants", 
      "concentration", 
      "second step", 
      "ozone", 
      "special variation", 
      "emission", 
      "parameters", 
      "transport simulations", 
      "step", 
      "simulations", 
      "species", 
      "content", 
      "radiation", 
      "rate", 
      "changes", 
      "effect", 
      "resolution", 
      "model input parameters", 
      "use", 
      "results", 
      "area", 
      "study", 
      "regard", 
      "variation", 
      "different sets", 
      "aspects", 
      "input parameters", 
      "cloud", 
      "model", 
      "impact", 
      "different input parameters", 
      "frequency", 
      "radiation model", 
      "extreme changes", 
      "relevance", 
      "factors", 
      "set", 
      "short-wave radiation", 
      "grid", 
      "albedo changes", 
      "surface albedo changes", 
      "radiation model input parameters", 
      "major surface albedo changes", 
      "total ozone column content", 
      "JO3 clouds", 
      "Photolysis Frequencies Calculation Aspects", 
      "Frequencies Calculation Aspects", 
      "Ozone Concentration Simulation"
    ], 
    "name": "Relevance of Photolysis Frequencies Calculation Aspects to the Ozone Concentration Simulation", 
    "pagination": "205-210", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024146691"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-04379-1_33"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-04379-1_33", 
      "https://app.dimensions.ai/details/publication/pub.1024146691"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_303.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-04379-1_33"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04379-1_33'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04379-1_33'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04379-1_33'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-04379-1_33'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      23 PREDICATES      86 URIs      79 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-04379-1_33 schema:about anzsrc-for:03
2 anzsrc-for:0399
3 schema:author N2f50e41a088743b6a40770442b198765
4 schema:datePublished 2014-03-28
5 schema:datePublishedReg 2014-03-28
6 schema:description For the simulation of photochemically created pollutants like ozone it is essential to correctly consider reaction rates induced by short-wave radiation. In atmospheric chemistry transport models this is achieved by the use of either off- or online calculated photolysis frequencies. In this study the effect of different input parameters of a radiation model on the calculated photolysis frequencies have been investigated. In the second step an atmospheric chemistry transport model was used to assess the impact of changed photolysis frequencies on the simulation of ozone concentrations. The impact of changed radiation model input parameters on the calculated photolysis frequencies vary not only with regard to the changed parameter but also with regard to the to the species to be dissociated. Furthermore the impact of different sets of photolysis rates employed in a chemical transport simulation on the modelled concentrations is differed and likely to be less important than other aspects of the simulation like the resolution of the grid and the emissions used. Apart from major surface albedo changes (grass to snow) and extreme changes in total ozone column content for JO3 clouds are the dominating factor in modifying the photolysis frequencies especially as they feature a highly temporal and special variation. The results show that simulated maximum ozone concentrations in areas with clouds are reduced.
7 schema:editor Nb167ddef5b6843b189ef04a41f8f159b
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N389f48a107044b5dbe38d922e1e33678
12 schema:keywords Frequencies Calculation Aspects
13 JO3 clouds
14 Ozone Concentration Simulation
15 Photolysis Frequencies Calculation Aspects
16 albedo changes
17 area
18 aspects
19 atmospheric chemistry transport model
20 calculation aspects
21 changes
22 chemical transport simulations
23 chemistry transport model
24 cloud
25 column content
26 concentration
27 concentration simulation
28 content
29 different input parameters
30 different sets
31 effect
32 emission
33 extreme changes
34 factors
35 frequency
36 grid
37 impact
38 input parameters
39 major surface albedo changes
40 maximum ozone concentration
41 model
42 model input parameters
43 ozone
44 ozone column content
45 ozone concentrations
46 parameters
47 photolysis frequencies
48 photolysis rates
49 pollutants
50 radiation
51 radiation model
52 radiation model input parameters
53 rate
54 reaction rate
55 regard
56 relevance
57 resolution
58 results
59 second step
60 set
61 short-wave radiation
62 simulations
63 special variation
64 species
65 step
66 study
67 surface albedo changes
68 total ozone column content
69 transport model
70 transport simulations
71 use
72 variation
73 schema:name Relevance of Photolysis Frequencies Calculation Aspects to the Ozone Concentration Simulation
74 schema:pagination 205-210
75 schema:productId N585354af53d249d89c2c2f7c147a972c
76 N8826a2556b83401980971793327922a3
77 schema:publisher N1625032888c84d0eba72ce9ca0bb33be
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024146691
79 https://doi.org/10.1007/978-3-319-04379-1_33
80 schema:sdDatePublished 2022-01-01T19:17
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N74d24e7c7b194487865c98322a822636
83 schema:url https://doi.org/10.1007/978-3-319-04379-1_33
84 sgo:license sg:explorer/license/
85 sgo:sdDataset chapters
86 rdf:type schema:Chapter
87 N1625032888c84d0eba72ce9ca0bb33be schema:name Springer Nature
88 rdf:type schema:Organisation
89 N2f50e41a088743b6a40770442b198765 rdf:first sg:person.012117246244.66
90 rdf:rest N5bb7790aca5c4c55b3f69f03c1bb9303
91 N389f48a107044b5dbe38d922e1e33678 schema:isbn 978-3-319-04378-4
92 978-3-319-04379-1
93 schema:name Air Pollution Modeling and its Application XXIII
94 rdf:type schema:Book
95 N49f4f9fc9a484837a2258bc9a1b6a6ed rdf:first Ned4a9815b2fa4b7b9b407501223d7b0b
96 rdf:rest rdf:nil
97 N585354af53d249d89c2c2f7c147a972c schema:name dimensions_id
98 schema:value pub.1024146691
99 rdf:type schema:PropertyValue
100 N5bb7790aca5c4c55b3f69f03c1bb9303 rdf:first sg:person.013356126023.19
101 rdf:rest Nf34575ae037145358fdeec77493701f6
102 N74d24e7c7b194487865c98322a822636 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N830114ea5e0544f8a2b4c21e992792b1 rdf:first sg:person.012560545423.41
105 rdf:rest rdf:nil
106 N8826a2556b83401980971793327922a3 schema:name doi
107 schema:value 10.1007/978-3-319-04379-1_33
108 rdf:type schema:PropertyValue
109 Nb167ddef5b6843b189ef04a41f8f159b rdf:first Nd7bcbd95e791498ba6eeff69eb9dba44
110 rdf:rest N49f4f9fc9a484837a2258bc9a1b6a6ed
111 Nd7bcbd95e791498ba6eeff69eb9dba44 schema:familyName Steyn
112 schema:givenName Douw
113 rdf:type schema:Person
114 Ned4a9815b2fa4b7b9b407501223d7b0b schema:familyName Mathur
115 schema:givenName Rohit
116 rdf:type schema:Person
117 Nf34575ae037145358fdeec77493701f6 rdf:first sg:person.013015255412.22
118 rdf:rest N830114ea5e0544f8a2b4c21e992792b1
119 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
120 schema:name Chemical Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0399 schema:inDefinedTermSet anzsrc-for:
123 schema:name Other Chemical Sciences
124 rdf:type schema:DefinedTerm
125 sg:person.012117246244.66 schema:affiliation grid-institutes:grid.9026.d
126 schema:familyName Uphoff
127 schema:givenName Malte
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012117246244.66
129 rdf:type schema:Person
130 sg:person.012560545423.41 schema:affiliation grid-institutes:grid.9026.d
131 schema:familyName Schlünzen
132 schema:givenName K. Heinke
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012560545423.41
134 rdf:type schema:Person
135 sg:person.013015255412.22 schema:affiliation grid-institutes:grid.15606.34
136 schema:familyName Ross
137 schema:givenName Ole
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015255412.22
139 rdf:type schema:Person
140 sg:person.013356126023.19 schema:affiliation grid-institutes:grid.9026.d
141 schema:familyName Grawe
142 schema:givenName David
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013356126023.19
144 rdf:type schema:Person
145 grid-institutes:grid.15606.34 schema:alternateName Bundesanstalt für Geowissenschaften und Rohstoffe, Stillweg 2, 30655, Hannover, Germany
146 schema:name Bundesanstalt für Geowissenschaften und Rohstoffe, Stillweg 2, 30655, Hannover, Germany
147 Meteorological Institute, Klima Campus, University of Hamburg, Bundesstrasse 55, 20416, Hamburg, Germany
148 rdf:type schema:Organization
149 grid-institutes:grid.9026.d schema:alternateName Meteorological Institute, Klima Campus, University of Hamburg, Bundesstrasse 55, 20416, Hamburg, Germany
150 schema:name Meteorological Institute, Klima Campus, University of Hamburg, Bundesstrasse 55, 20416, Hamburg, Germany
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...